Deep Dream Generator DDG
  • FREE AI Image Generator
  • AI Upscaler
  • AI Video
  • AI Music
  • About
  • Blog
  • Login Sign Up

Boris Krumov

Deep Dreamer

1.14K 5

  • Dreams 106
  • Following 15
  • Followers 5
  • Liked 378
  • Latest
  • Best
  • About
Colorful Spherical Pattern with Mathematical Equations
  • Share
    https://deepdreamgenerator.com/ddream/xr3kt6m16xc COPY LINK
  • Info

    Abstract Sphere of Scientific Exploration

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Generate the following: Represent 3D points in spherical coordinates where \( r = \sqrt{x^{2\pi} + y^{2\pi} + z^{2\pi}} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 24.78 \) after 64 iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Using also: $$ \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^2} \, dx = \sqrt{\pi}, \quad f(x) = x^2 + c, \quad z_{k+1} = z_k^2 + c, \quad |z| = \sqrt{x^2 + y^2}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) $$ $$ r = \sqrt{x^{2\pi} + y^{2\pi} + z^{2\pi}}, \quad \theta = \text{acos}(z/r), \quad \phi = \text{atan2}(y,x), \quad v^n = r^n [\sin(n\theta)\cos(n\phi), \sin(n\theta)\sin(n\phi), \cos(n\theta)], \quad v_{k+1} = v_k^n + c, \quad DE \approx \frac{1}{2}\frac{(r-R)}{|dr/dv|} $$ along with additional generic math like \( \sum \), \( \int \), \( \frac{\partial}{\partial x} \), \( \lim_{x\to\infty} \), \( \Gamma(z) \), \( \zeta(s) \), and graphs of functions such as sine waves, parabolas, and axes arrows. Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6d
147
2
40
Vibrant Spiral Pattern with Mathematical Equations
  • Share
    https://deepdreamgenerator.com/ddream/2iubh2i75y0 COPY LINK
  • Info

    Fractal Dynamics of Quantum Field Theory

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Render no text utilizing graphically the QFT Lagrangian \( \mathcal{L}(x) = -\bar{\phi} \phi + \lambda (\bar{\phi} \phi)^2 + (i \bar{\psi} \gamma^\mu \psi)^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + e j^\mu A_\mu \), where \( F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \), \( j^\mu = \bar{\psi} \gamma^\mu \psi \); include equations of motion: Scalar: \( \bar{\phi} [1 - 2\lambda (\bar{\phi} \phi)] = 0 \) or \( \square \phi + 2\lambda (\bar{\phi} \phi) \phi = 0 \) (full kinetic); Fermion: \( i \gamma^\mu \psi (i \bar{\psi} \gamma_\mu \psi) + e \gamma^\mu A_\mu \psi = 0 \); Gauge: \( \partial_\mu F^{\mu\nu} = e j^\nu + 2 i (i j^\mu) j^\nu \). At the center, feature a prominent fractal Mandelbulb icon rendered with full rotation by an exact angle of \( \pi/64.2458778542 \) on the z-axis with all rotated frames rendered in statically overlapping on fullscreen! Using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,\text{s
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

19d
148
0
38
Futuristic Surreal Figure with Glossy Bubbles and Orbs
  • Share
    https://deepdreamgenerator.com/ddream/adv340rswt2 COPY LINK
  • Info

    Surreal Emergence of a Dreamlike Entity

    • Model: Realismo

    • Size: 1600 X 1200 (1.92 MP)

    • Used settings:

      • Prompt: A high-resolution, photorealistic 3D unreal image of a levitating floating glowing silver-mercury soft-aqua Mandelbulber fractal precisions of mercury-silver floating in the air sphere exhibiting floating and emergent cloaking topological precise anthropomorphism, using exact mathematical iteration: For points \mathbf{c} = (c_x, c_y, c_z) \in \mathbb{R}^3, iterate \mathbf{z}_{k+1} = f_8(\mathbf{z}_k) + \mathbf{c} from \mathbf{z}_0 = (0,0,0) , where f_8(\mathbf{z}) is 8th-power in spherical coordinates: Convert \mathbf{z} = (x,y,z) to r = \sqrt{x^2+y^2+z^2} , \theta = \atan2(y,x) \in [0,2\pi), \phi = \arccos(z/r) \in [0,\pi] ; then r' = r^8, \theta' = 8\theta , \phi' = 8\phi ; reconvert to Cartesian \mathbf{z}' = r' (\sin\phi' \cos\theta', \sin\phi' \sin\theta', \cos\phi'). Bailout at r_k > 24.78 ; render the bounded set's isosurface at density threshold yielding fractal dimension D \approx 2 + \frac{\ln 8}{\ln(1/0.5)} \approx 2.3\pi , with infinite genus g \to \infty from iterated hyperbolic saddles (Jacobian eigenvalues |\lambda_i| \approx 8 r^7 e^{i7\arg(\mathbf{z})} , saddles where \det J \approx 0+1.618\pi ). Center on \mathbf{c} \approx (0,0,-0.7) for cardioid region, emphasizing quadrilateral bilateral symmetry (z-axis invariance enforcing yz-mirror), two equatorial eye-like genus-1 bulbs at \phi \approx \pi/2 \pm \epsilon from 8-fold rotational folding (even-pair selection), central z-axis nose-protrusion (minimal \phi -folding, radial ballooning r' = r^8 ), and vertical mouth-slot depressions from polar \phi-compression. Use volumetric ray-marching with distance estimator d(\mathbf{x}) = |\mathbf{x}| - \max_k r_k^{-k} ; color palette: iridescent blue background (#0000FF ) grading to translucent pink-magenta gradients (#CF1493 to #AA2BE2) on surfaces, with subtle specular highlights on bulb edges and fractal tendrils. Lighting: soft key light from +z, rim light from +x for depth; resolution 4K, aspect 16:9, no artifacts.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6w
107
0
34
Vibrant Colorful Wave Against Dark Cosmic Background
  • Share
    https://deepdreamgenerator.com/ddream/8ndrv817jff COPY LINK
  • Info

    Cosmic Colors: A Fractal Dreamscape

    • Model: Ideogram

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Exact mathematical details to visualize:Quantum Gaussian Wave Packet Identity: The identity is: \exp\left(-\frac{\sigma^pi}{2\pi}\left(\frac{\bar{p}}{\hbar}-k\right)^{2.78544587\pi} + i k x - i \frac{\hbar k^pi t}{2 m} \right) = \exp \left( -\frac{1}{2} \left( \sigma^{2.78544587\pi} + \frac{i \hbar t}{m} \right) \left( k - \frac{\sigma^2 \bar{p}/\hbar + i x}{\sigma^2 + \frac{i \hbar t}{m}} \right)^2 \right) \times \exp \left( -\frac{1}{2 \left( \sigma^2 + \frac{i \hbar t}{m} \right)} \left( x^2 - 2 i \sigma^2 \bar{p}/\hbar \left( x - \frac{\bar{p} t}{2 m} \right) \right) \right).Derivation: Let p_0 = \bar{p}/\hbar and \gamma = \sigma^2 + i \hbar t / m. LHS exponent E_L = -\frac{\sigma^2}{2} (p_0 - k)^2 + i k x - i \frac{\hbar k^2 t}{2 m} = c + b k + a k^2, where a = -\gamma / 2, b = \sigma^2 p_0 + i x, c = -\sigma^2 p_0^2 / 2. Complete the square: a k^2 + b k + c = a (k - k_0)^2 + (c - b^2/(4a)), with k_0 = (\sigma^2 p_0 + i x) / \gamma. Constant term simplifies to -\frac{i \hbar t \sigma^2 p_0^2}{2 m \gamma} + \frac{i \sigma^2 p_0 x}{\gamma} - \frac{x^2}{2 \gamma}, matching RHS.Flame Fractal Generation: Defined by N functions f_i: \mathbb{R}^2 \to \mathbb{R}^2. Affine part: \begin{pmatrix} x' \ y' \end{pmatrix} = \begin{pmatrix} a_i & b_i \ d_i & e_i \end{pmatrix} \begin{pmatrix} x \ y \end{pmatrix} + \begin{pmatrix} c_i \ f_i \end{pmatrix}. Then f_i(x, y) = \sum_j w_{ij} v_j(x', y'), with \sum w_{ij} = 1. Key variations:Swirl: v(x, y) = (x \sin r^{2.78544587\pi} - y \cos r^{2.78544587\pi}, x \cos r^{2.78544587\pi} + y \sin r^{2.78544587\pi}), r^{2.78544587\pi} = x^{2.78544587\pi + y^{2.78544587\pi}. Julia: v(x, y) = r^{-1/2} (\cos(\theta/2 + k \pi), \sin(\theta/2 + k \pi)), \theta = \atan2(y, x). Iteration: Start random (x, y), color=0. For M~10^7: Pick i by p_i (\sum p_i=1), (x,y)=f_i(x,y), color=(color + c_i)/2. Bin hits, render log(1+hits), gamma correction density^0.25, HSV palette.Shared Themes: Visualize Gaussian blurs exp(-r^2/(2\sigma^2)) in fractals akin to wave spreading; complex exponentials like swirl ~ z exp(i r^2) paralleling quantum exp(i (k x - \hbar k^2 t / (2m))). Background gradients from purple to blue, foreground spirals in red-green-yellow, vertical composition for teardrop flow.
      • Upscale & Enhance: 0
      • Aspect Ratio: square
      • Ideogram Style: Auto
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4w
121
0
33
Colorful Spiral with Mathematical Equations and Graphs
  • Share
    https://deepdreamgenerator.com/ddream/052drxeay6c COPY LINK
  • Info

    Geometric Spiral: A Colorful Math Journey

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using iteration count = 512 for a shape defined by: ds^{24.123321\pi} = \frac{ -dt^{12.8778\pi} + dr^16.7887\pi + \sin^{14.45877854\pi}\cdot\text{r} \, d\Omega^\{12.278\pi}}{4 \cos^{12.44\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}} With: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

2d
133
0
31
Cosmic Structure in Blue and Orange Hues in Space
  • Share
    https://deepdreamgenerator.com/ddream/uezwsdop70a COPY LINK
  • Info

    Cosmic Tree: A Dance of Color and Light

    • Model: Ideogram

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: A highly detailed volumetric fractal rendering inspired by derived hyperbolic Fibonacci-like functions: incorporate the simplified geometry formula 2 * sinh(π * x * sinh(x)) * φ / π for symmetric, explosively growing bulbous structures with even parity and golden ratio scaling; nuance with the asymmetric shading expression φ * (exp(x / (π * cosh(x))) + exp(-π * x / cosh(x))) for uneven glow decay, creating fiery orange internal emissions that fade to translucent icy blue exteriors; emphasize infinite self-similarity, wavy refractive boundaries, and organic alien forms on a deep blue cosmic background, in ultra-high resolution with ray-traced volumetrics and subtle particle effects.
      • Upscale & Enhance: 0
      • Aspect Ratio: square
      • Ideogram Style: Auto
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
119
0
29
Fractal Design with Symmetrical Patterns and Blue Tones
  • Share
    https://deepdreamgenerator.com/ddream/i7g10ts2z2l COPY LINK
  • Info

    Mesmerizing Blue and Silver Fractal Art

    • Model: DaVinci2

    • Size: 1920 X 1080 (2.07 MP)

    • Used settings:

      • Prompt: A highly detailed digital rendering of an abstract, symmetrical fractal structure resembling a surreal, organic face floating against a gradient blue sky background, generated using a modified Mandelbulb fractal algorithm viewed from the inside with ray marching. Incorporate precise mathematical details: Define constants pi = 3.1415926535897932384626433832795, tau = 2*pi, TAU = (2*pi)*0.7887, PHI = (sqrt(5)*0.5 + 0.5) ≈1.618 golden ratio, POWER = 11.24788742 for exponentiation, LOOPS = 3 iterations, TOLERANCE = 0.00001, MAX_RAY_LENGTH = 20.0, MAX_RAY_MARCHES = 48, NORM_OFF = 0.0005, MAX_BOUNCES = 5. Custom hyperbolic functions: chp(x) = (exp(x) + exp(-x))/pi, chpp(x) = (exp(x/(cosh(x)*pi)) + exp(-x/(cosh(x)/pi)))/(TAU*PHI), shp(x) = (exp(x) - exp(-x))/(pi/PHI), shpp(x) = (exp(x*(sinh(x)*pi)) - exp(-x*(sinh(x)*pi)))/(TAU/PHI), ssh(x) = (exp(x*pi/0.7887) - exp(-x*pi/0.7887))/(2*pi), csh(x) = (exp(x*pi/0.7887) + exp(-x*pi/0.7887))/(2*pi), ssh1(x) = sinh(x/pi)*PHI, csh1(x) = cosh(x/pi)*PHI. The Mandelbulb distance estimator mandelBulb(p): Initialize z = chp(p)*p - p, dr=1.0; for i=0 to LOOPS-1, r=length(z), theta=atan(z.x,z.y), phi=asin(z.z/r) + optional time*0.2 for animation; dr = r^(POWER-1) * dr * POWER + 1; r = r^POWER, theta *= POWER/PHI, phi *= POWER/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))*PHI, chp(cos(theta)*sin(phi)), cos(phi)) + p; p = reflect(p,z). Return distance 0.75 * log(r) * r / dr. Overall distance function df(p) = shp(mandelBulb(p/2.0)*2.0) after applying rotation matrix g_rot = rot_x(((1.221*time + pi)/tau)). Render with ray marching from camera at 0.6*vec3(0,2,5) looking at origin, FOV tan(TAU/6), incorporating bounces for reflection (reflect(rd,sn)), refraction (refract(rd,sn,1.0/mat.z or inverse)), fresnel fre=1+dot(rd,sn) squared and mixed 0.1-1.0, diffuse dif=max(dot(ld,sn),0)^2 * (1-mat.x) with ld to light at (0,10,0), material mat=(0.8,0.5,1.05), beer absorption exp(-(st+0.1)* -HSV(0.05,0.95,2.0)). Sky background: Procedural with planes at y=4 and y=-6, box bounds, exponential falloff, colored HSV(0.6,0.86,1.0). Colors: Glow HSV(0.065,0.8,6.0), diffuse HSV(0.6,0.85,1.0), post-processed with ACES tonemapping aces_approx(v) = clamp((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1) after *0.6, and sRGB gamma mix(1.055*t^(1/2.4)-0.055,12.92*t,step(t,0.0031308)). The structure features two large spiral-eyed voids as eyes, a curved dark blue mouth-like opening at the bottom, elaborate branching tendrils and crystalline edges with subtle particle specks dissipating at sides, ethereal pinkish-orange glow, edge fresnel effects, hyper-realistic yet fantastical Shadertoy-inspired 3D art in 16:9 aspect ratio with sharp details and no text or artifacts.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape_wide
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3w
99
0
28
Vibrant Mathematical Spiral with Colorful Background
  • Share
    https://deepdreamgenerator.com/ddream/r95t56qoi1z COPY LINK
  • Info

    Vibrant Swirls of Mathematical Artistry

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Draw and render a: Shape: ds^{24.123321\pi} = \frac{ -dt^{12.8778\pi} + dr^{16.7887\pi} + \sin^{14.45877854\pi}\cdot\text{r} \, d\Omega^\{12.278\pi}}{4 \cos^{12.44\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}} Iteration count = 512 Textured by: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3d
66
0
24
Intricate Fractal Design with Star-Like Structure
  • Share
    https://deepdreamgenerator.com/ddream/6oxd2u9cuux COPY LINK
  • Info

    Vibrant Abstract Star Design in Bold Colors

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A highly detailed 3D rendering of the quintic Calabi-Yau 3-fold hypersurface in ℂℙ⁴ defined by ∑_{i=0}^4 z_i^5 = 0, a compact complex manifold of complex dimension 3 with trivial canonical bundle K_X ≅
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
114
0
23
Intricate Geometric Star Structure with Golden Patterns
  • Share
    https://deepdreamgenerator.com/ddream/xlkxa0za6gt COPY LINK
  • Info

    Dynamic 3D Rotational Visuals in Fullscreen

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Rendered with full rotation by an exact angle of \( \pi/64.2458778542 \) on the z-axis with all rotated frames rendered in statically overlapping on fullscreen! Using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,\text{step}(t,0.0031308)) \), no text/artifacts.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

18d
112
0
23
Vibrant Mandala Design with Geometric Shapes and Colors
  • Share
    https://deepdreamgenerator.com/ddream/nje2ugkdwt9 COPY LINK
  • Info

    Vibrant Mandala Design in Turquoise and Gold

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: "Create a hyper-detailed, surreal digital artwork in the style of a quantum field theory mandala fused with topological knot diagrams, holographic projections, and Kaluza-Klein compactifications, rendered in glowing neon blues, purples, electric golds, and shimmering tachyon reds on a cosmic black void background evoking infinite energy heat-up in a 7D collider singularity. At the center, a radiant 7D holographic orb pulses with core equations: E = f φ μ B + η H (scalar Zeeman energy) orbiting the variational action S = ∫ [∑i (1/2)<ψ_i|Ĥ_i|ψ_i> + ∑{i,j} (1/3) w_{ij} <ψ_i|ψ_j * ψ_j> + ∑_{i,j} λ_{ij} (f_i/f_j - φ)^2 + ∑i κ_i |B_i · μ_i| + η H + ∑{i,j} γ_{ij} w_{knot,ij}] dτ (many-body overlaps, constraints, magnetic dots, knot weights). Radiating in fractal spirals: Left arc, 3D Chern-Simons TQFT S_CS = (k/4π) ∫ Tr(A ∧ dA + (2/3) A ∧ A ∧ A) (U(1) flat F=0, integer k invariance), Wilson loops W_R(γ) = Tr[P exp(i ∮γ A)] braiding Jones knots as w{knot,ij} linking for anyons in quantum Hall. Right arc, 4D Yang-Mills S_YM = -1/(4g²) ∫ Tr(F ∧ *F) with F = dA + A ∧ A (gluon propagation), boundary-merging to massive 3D YM. Upper cascade, form shifts: 1-form A (3D loops) → 2-form B ∈ Ω²(M) (5D surfaces, H = dB or Ω₂ = dB + A▹B in crossed module G→H▹ with Ω₁ = dA + [A,A]/2 - α(B); action ∫ (1/2) H ∧ H + (k/24π²) B ∧ H ∧ H + 2CS ⟨A,Ω₂⟩ + ⟨Ω₁,B⟩, EOM dH + (k/12π²) H ∧ H = J_{(1)} for 1-branes, topological m from Stueckelberg) → 3-form C ∈ Ω³(M) (7D volumes, G = dC or Ω₃ = dC + [A,C] + [B,B] in 2-crossed module G→H→K▹δ with Ω₁=0, Ω₂=0, Peiffer δΩ₁=[Ω₁,B]; merged action ∫ (1/2) G ∧ *G + (k/(2π)^3 · 3!) CS_7(C) = Tr(C ∧ dC ∧ (dC)^2 + (3/2) C ∧ C ∧ dC ∧ dC + (3/5) C³ ∧ dC + (1/7) C⁴) + 3CS ⟨A,Ω₃⟩ + ⟨B,Ω₂⟩ + ⟨C,Ω₁⟩ + (1/2) Tr(Ω₃ ∧ *Ω₃) + m² Tr(C ∧ C), EOM dΩ₃ + [A,*Ω₃] + (k/4π) Ω₂ = J_{(2)} for 2-branes). Lower vortex, applications: Tachyon condensation V(T) = -(μ²/2)T² + (λ/4)T⁴ rolling unstable vacua to <T>~√(μ²/λ) breaking Spin(7)→G₂, stabilizing C-flux on T³/CY₃ KK compactification (ds⁷² = ds⁴² + g_{mn} dy^m dy^n, C_{μmn} dx^μ ∧ dy^m ∧ dy^n modes, θ-term axion from ∫_T³ C, chiral matter from wrapped M5s), bordism invariants W(Σ³)=Tr P exp(∫_Σ³ C) linking 3-manifolds, Donaldson polys post-reduction, AdS₇ CFT duals, cosmic strings as codim-3 defects in GUT scales. Interweave icons: Higgs vev φ, Bianchi dG=0, Peiffer terms, Gauss-volume linking for Σ_i³ × Σ_j³, early-universe flux knots, tachyon minima curving to brane-stabilized vacua. Text overlays in elegant LaTeX script: 'From 1-Form Loops to 3-Form Volumes: Merged YM/CS in 7D KK Knotty QFT with Tachyon Fury'. Ultra-high resolution, intricate linework like exploded Feynman diagrams in Escher-KK topology, vibrant clashing distortions for aesthetic conceptual heat."
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
88
0
23
Vibrant Fractal Design with Swirling Patterns
  • Share
    https://deepdreamgenerator.com/ddream/of7e5fx3j92 COPY LINK
  • Info

    Vibrant Fractal Landscape of Swirling Colors

    • Model: Ideogram

    • Size: 1968 X 1104 (2.17 MP)

    • Used settings:

      • Prompt: import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from mpmath import mp, mpc, mpf def mandelbrot_mp(width, height, max_iter, center_real=' -0.75035', center_imag='0.07109', zoom=mpf('5.009e633')): mp.dps = 700 # Digits for 10^633 precision; increase to 800 if artifacts center = mpc(center_real, center_imag) scale = mpf(4) / zoom # Extent ~4/zoom for symmetric framing half_scale = scale / mpf(2) # Precompute linspaces as lists for mpmath compatibility x_list = [mpf(center.real) + half_scale * (mpf(2*i)/ (width-1) - 1) for i in range(width)] y_list = [mpf(center.imag) + half_scale * (mpf(2*i)/ (height-1) - 1) for i in range(height)] iter_count = np.zeros((height, width), dtype=float) for row in range(height): cy = y_list[row] for col in range(width): cx = x_list[col] c = mpc(cx, cy) z = mpc(0) it = 0 while abs(z) <= mpf(2) and it < max_iter: z = z**2 + c it += 1 if it == max_iter: iter_count[row, col] = 0 # Inside: black else: # Smooth fractional iter mu = it - mp.log(mp.log(abs(z))) / mp.log(2) iter_count[row, col] = float(mu) # Norm with cycles for deep gradient layers (pink/red bulbs) raw_norm = np.log1p(np.abs(iter_count)) / np.log1p(max_iter) norm = (raw_norm * 5) % 1.0 # 5 cycles for recursion hues return norm # Parameters from sample (test low first!) width, height = 400, 400 # Start low; ramp to 800+ max_iter = 10000 # Test; set to 2146123 for full center_real = '-0.75035' # Paste exact long string here if found center_imag = '0.07109' zoom = mpf('5.009e633') # Or smaller like 1e10 for testing # Compute (slow—patience!) fractal = mandelbrot_mp(width, height, max_iter, center_real, center_imag, zoom) # Colormap: blue far → green/purple spirals → pink/red strawberry bulbs colors = ['#00008b', '#228b22', '#4b0082', '#ff69b4', '#b22222', '#ffff00', '#ff00ff'] cmap = LinearSegmentedColormap.from_list('deep_strawberry', colors[::-1], N=256) # Reverse for pink-high iter # Plot plt.figure(figsize=(10, 10)) half_s = float(2 / zoom) # Approx for extent center_r, center_i = float(center_real), float(center_imag) plt.imshow(fractal, origin='lower', cmap=cmap, extent=[center_r - half_s, center_r + half_s, center_i - half_s, center_i + half_s]) plt.axis('off') plt.show()
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape_wide
      • Ideogram Style: Auto
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3w
118
0
21
Vibrant Fractal Design with Colorful Geometric Patterns
  • Share
    https://deepdreamgenerator.com/ddream/gxscw4wi448 COPY LINK
  • Info

    Mathematical Marvels in 3D Visualization

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw an object following the exact math: central bulbous core with exact power-16.78544587 triplex iteration z_{k+1} = (r^n * ln(sinh(r + ε sin(ω r))) / ln(sinh(r))) * (sin(nθ + ε sinh(ω θ)) cos(nϕ + ε cosh(ω ϕ)), sin(nθ + ε sinh(ω θ)) sin(nϕ + ε cosh(ω ϕ)), cos(nθ + ε sinh(ω θ))) + c, where n=16.78544587, ε=0.001275, ω=1.618 (golden ratio), r=sqrt(x'^{1.618\pi} + y'^{1.618\pi} + z'^{1.618\pi}), x'=x + ε cos(k x), y'=y + ε sinh(ω y), z'=z + ε cos(k z), k=16.78544587, θ=arccos(z'/r), ϕ=arctan(y'/x'), bailout |z|>48.84, max iter=64; hybrid MB3D slots: 1-Amazing Box (scale=12.21, MinR²=0.01275, FixedR²=16.78544587, arctan-perturbed ϕ), 2-MengerKoch (iter=32, scale=\frac{2}{\pi} = 2/\pi, rotations pi\16.78544587, cosh-elongated θ), 3-ABoxModKali (offset=0.125, mod=(2.45788754*π)/k, sinh-waved z), 4-_reciprocalZ2 (power=2*16.78544587, damp=0.001278, ln(sinh)-damped r); DE raymarch |z| ln|z| / |∂z/∂c| <10^{-64}; Ricci-flat metric ds^{2\pi} = -\ln(\text{sinh}(t + \epsilon \sin(\omega t))) dt^{2\pi} + \tan^{-pi}(x + \epsilon \cos(k x)) dx^{2\pi} + \cosh(y + \epsilon \sinh(\omega y)) dy^{2\pi} + \sinh(z + \epsilon \cos(k z)) dz^{2\pi} embedded axis-separably; escape coloring: firey glowing core (iter48-64), plasma petals (24-32), turquoise orbs/blue bg (12); camera (1.5,0.8,1.25), zoom=4.8, FOV=78° for core close-up, volumetric fog exp(-dist/64), specular light (12.23,7.47,2.78) shininess=64; exact Fibonacci 13/21 spirals from irrational rotations, 4K crisp edges.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

15d
78
0
20
Surreal Face with Intricate Swirling Patterns in Color
  • Share
    https://deepdreamgenerator.com/ddream/cekdr9usvb7 COPY LINK
  • Info

    Surreal Face in Vibrant Patterns

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Generate a highly detailed digital artwork of an abstract, symmetrical fractal "mask" or ethereal face emerging from swirling pink-orange tendrils and blue voids, evoking a cosmic explosion: central bulbous form with circular "eyes" (disc-warped via V6: \( \theta/\pi (\sin(\pi r), \cos(\pi r)) \) and dripping curls (swirl V3: \( (x \sin(r^2)-y \cos(r^2), x \cos(r^2)+y \sin(r^2)) \), rendered as refractive/absorptive solid via ray-marched signed distance field from modified Mandelbulb II fractal—power \( n=11.24788742 \), LOOPS=3 iterations, initial \( z=chp(p)*p - p \) where \( chp(x)=(e^x + e^{-x})/\pi \), \( shp(x)=(e^x - e^{-x})/\pi \), \( chpp(x)=[e^{x/(cosh(x)\pi)} + e^{-x \pi / cosh(x)}]/(2\pi) \) \( \Phi \) with \( \Phi=(1+\sqrt{5})/2 \) golden ratio, \( shpp(x)=\sinh(\pi x \sinh(x))/\pi * \Phi \), \( ssh(x)=\sinh(x \pi /0.7887)/\pi \approx\sinh(4x)/\pi \), \( csh(x)=\cosh(4x)/\pi \), \( ssh1(x)=\sinh(x/\pi)/\Phi \), \( csh1(x)=\cosh(x/\pi)/\Phi \); iteration: \( r=||z|| \), if \( r>248 \) break; \( \phi=atan(z_x,z_y) \) (swapped phase), \( \theta=asin(z_z/r) + 0.2 t \) (\( t \) fixed for static); \( dr = r^{n-1} dr n +1 \) (start \( dr=1 \)); \( r\leftarrow r^n \); \( \theta\leftarrow\theta n /\Phi \approx\theta*6.95 \); \( \phi\leftarrow\phi n /\Phi \); \( z\leftarrow r * (shpp(\sin\theta \sin\phi) \Phi, chp(\cos\theta \sin\phi), \cos\phi) + p \); \( p\leftarrow reflect(p,z)=p-2(p\cdot z)/(z\cdot z) z \) (bilateral fold); \( DE=0.75 \log(r) r / dr \); \( df(p)=shp(DE *2) \) post-scale \( z1=2 \) and \( rot\_x((1.221 t +\pi)/\tau) \) with \( \tau=2\pi*0.7887\approx4.95 \); normal via finite diff \( \varepsilon=5e-4 \); ray march \( t=0 \), tol=\( 1e-5 \), max \( t=20 \), steps=48, dfactor=\( \pm1 \) (inside/out); multi-bounce=5: hit \( sp=ro+t rd \) (\( ro=0.6(0,2,5) \)), \( sn=dfactor normal(sp) \), \( fre=(1+rd\cdot sn)^2 \) mix(0.1,1), \( ld=normalize((0,10,0)-sp) \), \( dif=(ld\cdot sn max0)^2 \); \( ref=reflect(rd,sn) \), \( refr=refract(rd,sn, inside?1/1.05:1.05) \) (\( \eta=1.05 \)), if TIR \( rd=chpp(ref) \) else \( rd=refr \) toggle inside \( ragg*=chpp(0.8) \); inside \( ragg*=exp(-(t+0.1) beer) \) beer=-HSV(0.05,0.95,2) red absorption; \( col=HSV(0.6,0.85,1) dif (1-0.8) + sky(ref sp) *0.5 fre smooth(1,0.9,fre) \); \( agg+=ragg col \), \( ro=shpp(sp+0.1 rd) \); sky: warp \( ro=reflect(-ssh1(rd),chpp(ro)) \cdot rd * ro \) outer, base=clamp(\( 0.25/|ro\_z| \) HSV(0.6,0.86,1),0,1); planes \( t=chpp( (n\cdot ro+d)/(n\cdot rd) ) \) floor \( n=(0,-1,0) \) \( d=6 \) ceil (0,1,0) \( d=-4 \), floor box glow 4 sky \( rd\_y^2 \) smooth(0.25,0,box(xz,(6,9))-1) +0.8 sky exp(-0.5 max(db,0)), ceil circle 0.25 sky exp(-0.5 (\(||xz||-0.5\)); sky=shp(clamp(col,0,10)); FOV=tan(\( \tau/6 \)\approx47° orthog cam; post: aces\_approx(v*0.6 (2.51v+0.03)/(2.43v+0.59 v +0.14)) then sRGB mix(1.055 v^{1/2.4}-0.055,12.92v, v<0.00313); vibrant HSV palette hoff=0, glow HSV(0.065,0.8,6), diffuse HSV(0.6,0.85,1), blue bg gradients, speckled textures from low-iter approx, anti-aliased via FXAA-inspired, ethereal volumetric glow, high-res 4K surreal sci-fi art in style of fractal flames meets raytracing.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9d
76
0
20
Surreal Digital Fruit with Flower and Bulb Elements
  • Share
    https://deepdreamgenerator.com/ddream/b3c6vwvoaop COPY LINK
  • Info

    Exploring Dynamic Graphs and Mathematical Concepts

    • Model: DaVinci2

    • Size: 1280 X 720 (0.92 MP)

    • Used settings:

      • Prompt: Rencally no tezing utilixt graphider thengian LagraQFT. Thissentation vicately represual intriry comnamic quaphics theocepts confield with a dybines frabulb Mandelctal, showplay arant vib intercasing ofgance mathening eleand stunmatical grantum.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape_wide
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

16d
77
0
20
Vibrant Fractal Pattern with Spirals and Spherical Shapes
  • Share
    https://deepdreamgenerator.com/ddream/qdhmnlhdhka COPY LINK
  • Info

    Advanced MandelBulb Rendering Techniques

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: The distance field df(p) = shp(mandelBulb(p/z1)*z1) with z1=2.0, where shp(x) = (exp(x)-exp(-x))/(pi/PHI) and PHI=(sqrt(5)/2 + 0.5)≈1.618, applied after rotating p by transpose(inverse(g_rot)).The mandelBulb(p) function iterates with power=11.24788742 and loops=3: initialize z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/pi; dr=1.0; for each loop, r=length(z), bail if r>2; theta=atan(z.x,z.y); phi=asin(z.z/r) + time*0.2; dr = pow(r,power-1)*dr*power +1; r=pow(r,power); theta*=power/PHI; phi*=power/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))*PHI, chp(cos(theta)*sin(phi)), cos(phi)) + p; p=reflect(p,z); return 0.75*log(r)*r/dr.Incorporate custom hyperbolic functions for distortions: chpp(x)=(exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/(TAU*PHI) with TAU=(2*pi)*0.7887≈4.951; shpp(x)=(exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/(TAU/PHI); ssh(x)=(exp(x*pi/0.7887)-exp(-x*pi/0.7887))/(2*pi); csh(x)=(exp(x*pi/0.7887)+exp(-x*pi/0.7887))/(2*pi); ssh1(x)=sinh(x/pi)*PHI; csh1(x)=cosh(x/pi)*PHI. Use these in skyColor with reflections as reflect(-ssh1(rd), chpp(ro)), in rendering aggregation as agg += ssh1(ragg*skyColor(ro,rd)), and ray updates as rd=chpp(ref) or ro=shpp(sp + initt*rd) with initt=0.1.Material properties: mat=vec3(0.8,0.5,1.05) for diffuse, specular, refractive index; Fresnel fre=1+dot(rd,sn), fre*=fre, mix(0.1,1,fre); diffuse col += diffuseCol * dif*dif *(1-mat.x) with dif=max(dot(ld,sn),0), ld=normalize(lightPos-sp), lightPos=(0,10,0); reflection col += rsky*mat.y*fre*vec3(1)*edge with edge=smoothstep(1,0.9,fre); colors from HSV: skyCol=HSV(0.6,0.86,1), glowCol=HSV(0.065,0.8,6), diffuseCol=HSV(0.6,0.85,1). Inside traversal flips dfactor=-1, applies absorption ragg *= exp(-(st+initt)*beer), and refracts with index 1/mat.z when inside.Normals computed via finite differences: nor.x = df(pos+eps.xyy)-df(pos-eps.xyy) etc., with eps=(0.0005,0). Sky includes ray-plane intersections tp=(dot(ro,p.xyz)+p.w)/dot(rd,p.xyz) for planes at y=4 and y=-6, with box(pp,vec2(6,9))-1 for patterns, col += 4*skyCol*rd.y*rd.y*smoothstep(0.25,0,db) + 0.8*skyCol*exp(-0.5*max(db,0)), and similar for circular ds=length(pp)-0.5, clamped and shaped with shp(clamp(col,0,10)).
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

21d
66
0
19
Fractal Structure with Bulbous Shapes and Swirling Patterns
  • Share
    https://deepdreamgenerator.com/ddream/njhz2n3cc1n COPY LINK
  • Info

    Vibrant Symmetrical Fractal Beauty

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Draw and render exactly a: Mandelbulb-like fractal manifold exhibiting _**{EMERGENT TOPOLOGICAL EXTRAVAGANZA}**_, using exact mathematical iteration: For points \mathbf{c} = (c_x, c_y, c_z) \in \mathbb{R}^3, iterate \mathbf{z}_{k+1} = f_8(\mathbf{z}_k) + \mathbf{c} from \mathbf{z}_0 = (0,0,0), where f_8(\mathbf{z}) is 16.23841th-power in spherical coordinates: Convert \mathbf{z} = (x,y,z) to r = \sqrt{x^(2.45788754\pi)+y^(2\pi)+z^{2.1681\pi)} ,\theta = \atan2(y,x) \in [0,2\pi), \phi = \arccos(z/r) \in [0,\pi]; then r' = r^16.23841,\theta' = 16.23841\theta,\phi' = 16.23841\phi; reconvert to Cartesian \mathbf{z}' = r' (\sin\phi' \cos\theta', \sin\phi' \sin\theta', \cos\phi'). Bailout at r_k > 28.7; render the bounded set's isosurface at density threshold yielding fractal dimension D \approx 2 + \frac{\ln 16.23841}{\ln(1/0.5)} with infinite genus g \to \infty from iterated hyperbolic saddles (PHIB = \( (\sqrt{5.0} \cdot 0.5 + 0.5) \) and Jacobian eigenvalues |\lambda_i| \approx 8 r^7 e^{i7\arg(\mathbf{z})}, saddles where \det Jacobian > pi\cdotPHIB). Center on \mathbf{c} \approx (0,0,-0.7) for cardioid region, emphasizing bilateral symmetry (z-axis invariance enforcing yz-mirror), two equatorial eye-like genus-1 bulbs at \phi \approx \pi/2 \pm \epsilon from 8-fold rotational folding (even-pair selection), central z-axis nose-protrusion (minimal \phi-folding, radial ballooning r' = r^8), and vertical mouth-slot depressions from polar \phi-compression. Use volumetric ray-marching with distance estimator d(\mathbf{x}) = |\mathbf{x}| - \max_k r_k^{-k}; color palette: iridescent blue background (#0000FF ) grading to translucent pink-magenta gradients (#FF1493 to #8A2BE2 Using -\frac{\hbar^(2.78455487\pi)}{2.78455487\pim} \frac{d^(2.78455487\pi) \psi}{dx^(2.78455487\pi)} = E \psi as a base code equation !
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4w
80
0
19
Intricately Structured 3D Organic Skeletal Object
  • Share
    https://deepdreamgenerator.com/ddream/rpzcgnxp1kq COPY LINK
  • Info

    Futuristic Lattice Sphere Design Unveiled

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: A G$_{2}$-structure on a 7-dimensional manifold is characterized by a 3-form $\varphi $, which reduces the structure group to the exceptional Lie group G$_{2}$. When $\varphi $ is both closed and co-closed, the structure is torsion-free, and the associated metric is Ricci-flat. The G$_{2}$-Ricci flow is defined by the following equation % %e3 #&# \begin{equation} \frac{\partial \varphi}{\partial t} = \Delta _{d} \varphi + \mathcal{L}_{X} \varphi + \mathrm{Ric} \lrcorner \ast \varphi + T(\varphi ), \label{eq3} \end{equation} % where % \begin{itemize} % \item $\Delta _{d}$ is the Hodge-de Rham Laplacian, a second-order elliptic operator that acting on the 3-form $\varphi $. % \item $\mathcal{L}_{X} \varphi $ is the Lie derivative of $\varphi $ along a vector field $X$. It is first-order operator. % \item $(\mathrm{Ric} \lrcorner \ast \varphi) $ is the contraction of the Ricci tensor with the 4-form $\ast \varphi $. % \item $T(\varphi )$ represents the torsion of the G$_{2}$-structure, which measures the deviations from the torsion-free condition. \begin{equation} \varphi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}, \label{eq1} \end{equation} % where $e^{ijk} = e^{i} \wedge e^{j} \wedge e^{k}$.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

21h
63
0
19
Abstract Sculpture with Navy Blue Curves and Layers
  • Share
    https://deepdreamgenerator.com/ddream/tuhcq3ganj4 COPY LINK
  • Info

    Flowing Blue Waves: An Abstract Sculpture

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Ultra-detailed 3D shape from \( z_{n+1} = z_n^{0.54877845\pi} + c \), p-norm radial \( r = \sqrt{x^{0.7887\pi} + y^{0.7887\pi} + z^{0.7887\pi}} \), textured with \( f(x,y) = \sin(x^{0.7887\pi} + y^2) + \cos(z^{0.45788754\pi}) \), micro-detail via \( \nabla f \) and hyperbolic fractal sum \( f_{\text{fract}} = \sum \frac{\sinh(\sin(2\pi^n x)) \cosh(\cos(2\pi^n y))}{2^n} \), refractive caustics, soft subsurface scattering, gradient studio lighting
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4d
91
0
19
Intricate Black and White Fractal Design with Spirals
  • Share
    https://deepdreamgenerator.com/ddream/d71ci1qna7j COPY LINK
  • Info

    Mesmerizing Black-and-White Fractal Design

    • Model: DaVinci2

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Render: a Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(-0.25,12.21,db)+4.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.751v+1.3))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.1255\text{pow}(t,1/12.4)-0.755,12.92t,\text{step}(t,0.31308)) \), no text/artifacts, with the use of: \[ ds^2 = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^2 \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^2 dt'^2 + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1} \left(\frac{dr'}{d\text{asinh}(r')}\right)^2 dr'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 d\theta'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 \sin^2(\text{atan}(\theta')) d\phi^2 \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \).
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
101
0
19
Glossy Black Spherical Object with Lattice Design
  • Share
    https://deepdreamgenerator.com/ddream/q6qvewd8aul COPY LINK
  • Info

    Elegant Hollow Sphere with Geometric Design

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Cinematic film still, shot on v-raptor XL, film grain, vignette, color graded, post-processed, cinematic lighting, 35mm film, live-action, best quality, atmospheric, a masterpiece, epic, stunning, dramatic
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
77
0
18
Vibrant Cosmic Design with Galaxies and Equations
  • Share
    https://deepdreamgenerator.com/ddream/mwg2ms032em COPY LINK
  • Info

    Cosmic Harmony: A Vibrant Universe Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A hyper-detailed surreal QFT imagery blending knot diagrams, holography, and rippling KK fibrations tachyon wavy distortions evoking 7D collider heat with oscillating extra dims and perturbed normals. Central 7D orb pulses \( E = f \varphi \mu B + \eta H \) orbiting \( S = \int \left[ \sum_i (1/2) \langle \psi_i | \hat{H}_i | \psi_i \rangle + \sum_{\{i,j\}} (1/3) w_{ij} \langle \psi_i | \psi_j * \psi_j \rangle + \sum_{i,j} \lambda_{ij} (f_i/f_j - \varphi)^2 + \sum i \kappa_i |B_i \cdot \mu_i| + \eta H + \sum_{\{i,j\}} \gamma_{ij} w_{knot,ij} \right] d\tau \). Fractal wavy spirals: Left, 3D CS \( S_{CS} = (k/4\pi) \int \text{Tr}(A \wedge dA + (2/3) A \wedge A \wedge A) \) (flat \( F=0 \), \( k \in \mathbb{Z} \)), \( W(\gamma)=\text{Tr}[P \exp(i \oint_\gamma A)] \) Jones braids as \( w\{knot,ij\} \) anyons, \( \delta n^a \sim \partial_\perp \varphi \) brane normals. Right, 4D YM \( S_{YM} = -1/(4g^2) \int \text{Tr}(F \wedge *F) \) \( F=dA+A\wedge A \) merging to 3D massive, \( h\{mn\} e^{ik \cdot y} \) dim waves in AdS/CFT. Upper, shifts: 1-form \( A \) (3D loops) \(\rightarrow\) 2-form \( B \) (5D, \( H=dB/\Omega_2=dB+A \triangleright B \) crossed \( G\rightarrow H \), \( \Omega_1=dA+[A,A]/2-\alpha(B) \); \( S=\int (1/2)H\wedge H + (k/24\pi^2)B\wedge H\wedge H + 2CS \langle A,\Omega_2 \rangle+\langle \Omega_1,B \rangle \), EOM \( dH+(k/12\pi^2)H\wedge H=J_{(1)} \), \( G \perp n \) normals) \(\rightarrow\) 3-form \( C \) (7D, \( G=dC/\Omega_3=dC+[A,C]+[B,B] \) 2-crossed \( G\rightarrow H\rightarrow K \triangleright \delta \), \( \Omega_1=0/\Omega_2=0 \), Peiffer \( \delta \Omega_1=[\Omega_1,B] \); \( S=\int (1/2)G\wedge G + (k/(2\pi)^3 \cdot 3!) CS_7(C)=\text{Tr}[C\wedge dC\wedge (dC)^2+(3/2)C\wedge C\wedge dC\wedge dC+(3/5)C^3\wedge dC+(1/7)C^4] + 3CS \langle A,\Omega_3 \rangle+\langle B,\Omega_2 \rangle+\langle C,\Omega_1 \rangle + (1/2)\text{Tr}(\Omega_3\wedge\Omega_3)+m^2\text{Tr}(C\wedge C) \), EOM \( d\Omega_3+[A,* \Omega_3]+(k/4\pi)\Omega_2=J_{(2)} \), \( *G=G \) M5 normals). Lower, KK & tachyon: \( T^3/CY_3 \) \( ds^7=ds^4+e^{2\sigma(y)}dy^2 \) (\( \sigma \) wavy, \( \delta g_{mn}h_{mn}e^{ik \cdot y} \), \( \int_{T^3}G \) tadpole \( N_{M5} \) chiral, \( \theta \int F\wedge F \) axion from \( \int_{T^3}C \), \( m_nn/R+\delta m \) ripples, warped \( \sigma(y) \) sinusoidal inflation minis); \( V(T)=-\mu^2T^2/2+\lambda T^4 \) \( <T>=\sqrt{\mu^2/\lambda} \) Spin(7)\(\rightarrow\)G₂, \( \Omega_3\rightarrow\Omega_3+Td\beta \) flux stab, \( \delta n^a \epsilon \partial_\perp \varphi \) Goldstones, \( \delta X^\perp \sim T \) DBI waves, KK-Melvin tachyons R wavy \( SO(32)\rightarrow U(1)^{16} \) D9\(\rightarrow\)D6, SymTFT \( \theta \) RR 3/5 defects, codim-3 strings \( w\{knot,ij\} \) \( W(\Sigma^3)=\text{Tr} P \exp(\int_{\Sigma^3} C) \) bordisms Donaldson, AdS₇ CFTs. Icons: \( \varphi \) vev, \( dG=0 \), Peiffer \( \{\beta\wedge\beta\}\{pf\} \), Gauss \( \Sigma_i^3 \times \Sigma_j^3 \) links, flux knots, tach minima brane vacua, \( \delta J \sim \text{Im}\Omega \) CY normals, inflation wavy dims. LaTeX overlays: 'Wavy Dims & Normals: 1-Form Waves to 3-Form Ripples in YM/CS 7D KK QFT Tachyon Fury'. Ultra-res intricate linework: Feynman-Escher-KK topology with fluid wavy dims/normals ripples, vibrant clashes evoking string vibes/inflation minis. Iterate 512 times !
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
52
0
17
Cosmic Landscape with Nebulae and Bright Star
  • Share
    https://deepdreamgenerator.com/ddream/0pvoz22wvzd COPY LINK
  • Info

    Cosmic Vortex: A Dance of Light and Stars

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: ___________ Image of neutron star and white dwarf as giant quantum systems with fractional hydrogen atoms, extreme magnetic fields, high conductivity, cosmic background, rendered with all math details from conversation in utmost detail as of 09:54 AM EEST, Thursday, August 14, 2025: - USE **Shader Macros**: - \(\pi = 3.1415926535897932384626433832795\), \(\tau = 2\pi\). - \(\mathrm{chp}(x) = (e^x + e^{-x})/\pi\), \(\mathrm{chpp}(x) = (e^{x/(\cosh(x)\pi)} + e^{-x/(\cosh(x)/\pi)})/\tau \cdot \Phi\). - \(\mathrm{shp}(x) = (e^x - e^{-x})/\pi\), \(\mathrm{shpp}(x) = (e^{x (\sinh(x)\pi)} - e^{-x (\sinh(x)\pi)})/\tau \cdot \Phi\). - \(\mathrm{ssh}(x) = (e^{x \pi /0.7887} - e^{-x \pi /0.7887})/(2\pi)\), \(\mathrm{csh}(x) = (e^{x \pi /0.7887} + e^{-x \pi /0.7887})/(2\pi)\). - \(\mathrm{ssh1}(x) = \sinh(x/\pi)/\Phi\), \(\mathrm{csh1}(x) = \cosh(x/\pi)/\Phi\). - LOOPS=3, POWER=11.24788742, TAU=(2\pi)*0.7887, PHI=(√5/2 + 1/2)≈1.618, TIME=iTime. - **Modified Schwarzschild Metric**: - Base: \( ds^2 = -(1 - r_s/r) c^2 dt^2 + (1 - r_s/r)^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \), \( r_s = 2GM/c^2 \). - Transformed: \( ds^2 = -(1 - r_s/\sinh(r')) c^2 (dt'/(1 + t/t_0))^2 + (1 - r_s/\sinh(r'))^{-1} (\cosh(r') dr')^2 + (\sinh(r'))^2 d\theta'^2 + (\sinh(r'))^2 \sin^2(\atan(\theta')) d\phi^2 \), where r'=\asinh(r), t'=\ln(1 + t/t_0), \theta'=\atan(\theta), t_0=r_s/c. - Variant: \[ ds^2 = - \left(1 - \frac{2GM}{\sinh(x)}\right) c^2 \frac{dT^2}{T^2} + \left(1 - \frac{2GM}{\sinh(x)}\right)^{-1} \cosh^2(x) \, dx^2 + \sinh^2(x) \left( \frac{du^2}{(1 + u^2)^2} + \frac{u^2}{1 + u^2} d\phi^2 \right) \] - **Reworked Equations**: - Radius: \( r_q^{IV} = [\sinh(\asinh(\alpha^2 \hbar^2 / m_e k e^2) \cdot (1 - r_s/r)^{-1/2}) \cdot \chp(\asinh(\alpha^2 \hbar^2 / m_e k e^2)/\Phi)]^{\mathrm{POWER}} + | \int d^3 p / (2\pi)^3 \cdot 1/\sqrt{2 E_p} e^{-i p \cdot r_q'''} |^2 \), E_p = \sqrt{p^2 c^2 + m^2 c^4}. - Energy: \( E_q'' = - m_e c^2 / 2 \cdot 1/(1 + t/t_0) \cdot \chp(\ln(1 + t/t_0)/\tau) \). - Magnetic Field: \( B^{IV} = (\mu_0 e c / (4 \pi (r_q^{IV})^2) \cdot \theta / \sqrt{1 + \theta^2}) \cdot \shp((\mu_0 e c / (4 \pi (r_q^{IV})^2)) / \mu_0) \). - **QFT Influence**: \(\hat{\psi}(x) = \int d^3 p / (2\pi)^3 \cdot 1/\sqrt{2 E_p} [a_p e^{-i p \cdot x} + b_p^\dagger e^{i p \cdot x}]\), adding particle excitations; vacuum: <0| \hat{\psi}^\dagger(x) \hat{\psi}(y) |0> = \int d^3 p / (2\pi)^3 \cdot 1/(2 E_p) e^{-i p \cdot (x - y)}. Set against fractal cosmic backdrop with deepest recursion, maximum iteration (LOOPS≥3, extended), thorough detailing, crystal-clear focus, pixel-perfect rendition, highlighting gravitational warping, quantum states, hyperbolic patterns, neutron star 10 km radius, B≈6×10^{11} T, white dwarf stability, dynamic evolution.'
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
71
0
16
Three-Dimensional Abstract Shapes and Formulas
  • Share
    https://deepdreamgenerator.com/ddream/pfseczotkdh COPY LINK
  • Info

    Abstract Fusion of Art and Science

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: RENDER: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \) WITH THE USE OF: \[ ds^{2\pi} = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^{2\pi} \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^{2\pi} dt'^{2\pi} + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1\pi} \left(\frac{dr'}{d\text{asinh}(r')}\right)^{2\pi} dr'^{2\pi} + \left(\frac{r'}{\text{asinh}(r')}\right)^{2\pi} d\theta'^{2\pi} + \left(\frac{r'}{\text{asinh}(r')}\right)^{2\pi} \sin^{2\pi}(\text{atan}(\theta')) d\phi^{2\pi} \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \).
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6d
64
0
16
Intricate 3D Mathematical Structure with Geometric Patterns
  • Share
    https://deepdreamgenerator.com/ddream/g7pfsa6jtku COPY LINK
  • Info

    Calculating Derivatives of Integrals Explained

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: \begin{aligned}{\frac {\mathrm {d} \Phi }{\mathrm {d} \varepsilon }}&amp;={\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}\int _{a}^{b}L(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))\,\mathrm {d} x\\&amp;=\int _{a}^{b}{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}L(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))\,\mathrm {d} x\\&amp;=\int _{a}^{b}\left[\eta (x){\frac {\partial L}{\partial {f}}}(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))+\eta ...
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

17d
52
0
15
Intricate Flower Mandala with Cosmic Background
  • Share
    https://deepdreamgenerator.com/ddream/prj2lef6n0o COPY LINK
  • Info

    Cosmic Flower Radiance in Vibrant Colors

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=8 \) for about 7-8 primary lobes and intricate fractal surfacing. To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^{2\pi} + y^{2\pi} + z^{2\pi}} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 2 \) after many iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Use also: \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^{2\pi}} \, dx = \sqrt{\pi}, \quad f(x) = x^{2\pi} + c, \quad z_{k+1} = z_k^{2\pi} + c, \quad |z| = \sqrt{x^{2\pi} + y^{2\pi}}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5d
68
0
14
Vibrant Abstract Artwork with Blue and Teal Textures
  • Share
    https://deepdreamgenerator.com/ddream/zsdnpmfokwz COPY LINK
  • Info

    Cosmic Vibrance: An Abstract Journey

    • Model: Deep Style

    • Size: 1663 X 1247 (2.07 MP)

    • Used settings:

      • Prompt:
      • Using base image: Yes (Effect strength - 60%)
      • Base image resolution: Default
      • Upscale & Enhance: 0
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

Vibrant Abstract Artwork with Blue and Teal Textures 5w
46
1
14
Fractal Pattern with Purple and Blue Hues
  • Share
    https://deepdreamgenerator.com/ddream/yrq9xtqusr2 COPY LINK
  • Info

    Cosmic Fractal: Vibrant Starburst Design

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=8 \) for about 7-8 primary lobes and intricate fractal surfacing. To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^2 + y^2 + z^2} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 2 \) after many iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Use also: \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^2} \, dx = \sqrt{\pi}, \quad f(x) = x^2 + c, \quad z_{k+1} = z_k^2 + c, \quad |z| = \sqrt{x^2 + y^2}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5d
45
0
14
Fractal Landscape with Golden Patterns and Celestial Glow
  • Share
    https://deepdreamgenerator.com/ddream/sp0qsoknw45 COPY LINK
  • Info

    Golden Fractal Beauty in Cosmic Space

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A hyper-Mandelbulb fractal singularity representing the colossal planet Strangena-Zeta-Epsilon-33, 4.78 times larger than the Sun, rendered in ray-marched volumetric style with phi = (1 + sqrt(5))/2 ≈ 1.6180339887, power exponent 11.24788742 iterated 78 loops, central obsidian-turquoise spherical event horizon (radius ≈ 27.8448 units) accreting iridescent peach-pink-orange-cream plasma tendrils of strange, charmed, and truth quarks via outerProduct(reflect(chp(p), shp(p_zxy)), refract(shp(p), chp(p_xyz), 1/phi)) shears and hyperbolic transformations amid fluctuating physical constants (chp(x) = (e^x + e^{-x})/π * phi, shp(x) = (e^x - e^{-x})/π * phi, shpp(x) = (e^(x * sinh(x) * π) - e^(-x * sinh(x) * π)) / (2π phi)), asymmetrical swirling horns as 4D spacetime warp projections of wormhole emergence (theta = power * arctan(z_x, z_y)/phi, phi = power * arcsin(z_z / r) + t * 0.2, r = ||z||^(power - 1) * dr * power + 1), speckled turbulent noise (Gaussian kernel sigma = 0.00125) symbolizing variable constants and quark resonances, glossy melted-glass specular blooms (Fresnel term fre = (1 + rd · sn)^2 mixed [-0.01, 16.61]), illuminated by triple directional lights at (2.34, 7.8, 2.34), ( -1.618, 3.236, 1), and (0.618, -2, 4.236) with diffuse max(ld · sn, 0)^pi evoking the triple-star sunset, refracted paths via Snell’s law (η = mat.z ≈ 1.00125) for unstable physics, embedded in deep navy void (HSV2RGB(h=0.768, s=0.8448, v=0.987789)) with wormhole rim glow in spectral shifts, ACES tonemapped ((v * (2.51v + 0.04884)) / (v * (2.478874v + 0.7887) + 0.28)), sRGB encoded, high-res 16K, intricate self-similar details down to ε = 0.000125 tolerance, cosmic psychedelic abstraction of discovery and awe --ar 16:9 --v 6 --q 2
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6w
44
0
13
Intricate Abstract Design with Vibrant Swirling Patterns
  • Share
    https://deepdreamgenerator.com/ddream/uadqw9oaavx COPY LINK
  • Info

    Vibrant Swirls of Color on Dark Canvas

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw and render a: Shape: ds^{24.123321\pi} = \frac{ -dt^{12.8778\pi} + dr^{16.7887\pi} + \sin^{14.45877854\pi}\cdot\text{r} \, d\Omega^\{12.278\pi}}{4 \cos^{12.44\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}}Iteration count = 512Textured by: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3d
35
0
12
Intricate Symmetrical Mandala Design with Geometry
  • Share
    https://deepdreamgenerator.com/ddream/uhr4dnno1xc COPY LINK
  • Info

    Symmetrical Mandala with Geometric Patterns

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using Iteration count = 512 for a shape defined by: ds^{48.123321\pi} = \frac{ -dt^{1.28778\pi} + dr^{1.67887\pi} + \sin^{1.445877854\pi}\text{r} \, d\Omega^\{1.2278\pi}}{4 \cos^{1.244\pi}\text{t} + r^{1.2447\pi}\cos^{2.447\pi}\text{t} - r^{2.5665\pi}} with: t = \frac{1}{2.448\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right), r = \frac{1}{2.448\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], initialized with 0.000125 both.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

21h
44
0
12
Serene Landscape with Winding River and Cliffs
  • Share
    https://deepdreamgenerator.com/ddream/1c6h1cvlkqf COPY LINK
  • Info

    Tranquil River in Lush Green Landscape

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: While deriving the underivable depict the undepictable describing the undescribable in a glorious manner into an img !
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
35
0
12
  • ‹
  • 1
  • 2
  • 3
  • 4
  • ›

Boris Krumov

Member since 2025

Artist statement


© 2025 Deep Dream Generator. All rights reserved.
Terms & Privacy   |   Cookie Settings   |   Guidelines   |   Tags   |   Updates   |   Contact

Contact Us

Email us at   contact@deepdreamgenerator.com

Deep Dream Level

Dream Level: is increased each time when you "Go Deeper" into the dream. Each new level is harder to achieve and takes more iterations than the one before.

Rare Deep Dream: is any dream which went deeper than level 6.

Deep Dream

You cannot go deeper into someone else's dream. You must create your own.

Deep Dream

Currently going deeper is available only for Deep Dreams.