Deep Dream GeneratorDDG
  • FREE AI Image Generator
  • AI Upscaler
  • AI Video
  • AI Music
  • About
  • Blog
  • Login Sign Up
    • AI Image
    • AI Video
    • AI Music
    • AI Upscaler
    • About
    • Blog
    • Login
    • Sign Up

Boris Krumov

Deep Dreamer

2.01K 9

  • Dreams 177
  • Following 16
  • Followers 11
  • Liked 530
  • Latest
  • Best
  • About
Vibrant Fractal Design with Colorful Geometric Patterns
  • Share
    https://deepdreamgenerator.com/ddream/gxscw4wi448 COPY LINK
  • Info

    Mathematical Marvels in 3D Visualization

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw an object following the exact math: central bulbous core with exact power-16.78544587 triplex iteration z_{k+1} = (r^n * ln(sinh(r + ε sin(ω r))) / ln(sinh(r))) * (sin(nθ + ε sinh(ω θ)) cos(nϕ + ε cosh(ω ϕ)), sin(nθ + ε sinh(ω θ)) sin(nϕ + ε cosh(ω ϕ)), cos(nθ + ε sinh(ω θ))) + c, where n=16.78544587, ε=0.001275, ω=1.618 (golden ratio), r=sqrt(x'^{1.618\pi} + y'^{1.618\pi} + z'^{1.618\pi}), x'=x + ε cos(k x), y'=y + ε sinh(ω y), z'=z + ε cos(k z), k=16.78544587, θ=arccos(z'/r), ϕ=arctan(y'/x'), bailout |z|>48.84, max iter=64; hybrid MB3D slots: 1-Amazing Box (scale=12.21, MinR²=0.01275, FixedR²=16.78544587, arctan-perturbed ϕ), 2-MengerKoch (iter=32, scale=\frac{2}{\pi} = 2/\pi, rotations pi\16.78544587, cosh-elongated θ), 3-ABoxModKali (offset=0.125, mod=(2.45788754*π)/k, sinh-waved z), 4-_reciprocalZ2 (power=2*16.78544587, damp=0.001278, ln(sinh)-damped r); DE raymarch |z| ln|z| / |∂z/∂c| <10^{-64}; Ricci-flat metric ds^{2\pi} = -\ln(\text{sinh}(t + \epsilon \sin(\omega t))) dt^{2\pi} + \tan^{-pi}(x + \epsilon \cos(k x)) dx^{2\pi} + \cosh(y + \epsilon \sinh(\omega y)) dy^{2\pi} + \sinh(z + \epsilon \cos(k z)) dz^{2\pi} embedded axis-separably; escape coloring: firey glowing core (iter48-64), plasma petals (24-32), turquoise orbs/blue bg (12); camera (1.5,0.8,1.25), zoom=4.8, FOV=78° for core close-up, volumetric fog exp(-dist/64), specular light (12.23,7.47,2.78) shininess=64; exact Fibonacci 13/21 spirals from irrational rotations, 4K crisp edges.
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

8w
78
0
20
Abstract Sculpture with Navy Blue Curves and Layers
  • Share
    https://deepdreamgenerator.com/ddream/tuhcq3ganj4 COPY LINK
  • Info

    Flowing Blue Waves: An Abstract Sculpture

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Ultra-detailed 3D shape from \( z_{n+1} = z_n^{0.54877845\pi} + c \), p-norm radial \( r = \sqrt{x^{0.7887\pi} + y^{0.7887\pi} + z^{0.7887\pi}} \), textured with \( f(x,y) = \sin(x^{0.7887\pi} + y^2) + \cos(z^{0.45788754\pi}) \), micro-detail via \( \nabla f \) and hyperbolic fractal sum \( f_{\text{fract}} = \sum \frac{\sinh(\sin(2\pi^n x)) \cosh(\cos(2\pi^n y))}{2^n} \), refractive caustics, soft subsurface scattering, gradient studio lighting
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
91
0
19
Vibrant Blue Lotus Flower in Cosmic Background Illustration
  • Share
    https://deepdreamgenerator.com/ddream/7l0446jqd57 COPY LINK
  • Info

    Celestial Lotus in a Cosmic Dreamscape

    • Model: AIVision (Ultra)

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: <lora:Intricacy Vibe:1.0> A lotus in a cosmic background, representing a transcendentally-warped TimeSpaceFlow with the exact metric ds^{12.78544587\sqrt[\pi]{2}\pi} = -\left(1 - \frac{r_s}{\sinh x}\right) c^2 , dt^{e\pi} + \left(1 - \frac{r_s}{\sinh x}\right)^{-1} \cosh^{e\pi} x , dx^{\pi\phi} + \sinh^{\sqrt[\pi]{3}\pi} x , d\Omega^{12.78544587\pi}, \phi = (1 + \sqrt{5})/2; central glowing golden core as singularity with amber-orange light rays, nonsymmetrical translucent cyan-blue lotus petals with intricate golden vein fractals exhibiting non-integer oscillations and mirror symmetry spirals, recursive self-similar golden-ratio helicoidal curls along petal edges, ethereal volumetric glow and caustics, all followint the exact, precise, concise and full mathematics provided. Apply tensor product of the cotangent bundle of the orbifold over the tangent bundle of the conifold; then TimeSpaceFlow wave mirror symmetralize them !
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

13d
66
0
19
Vibrant 3D Structure with Mathematical Patterns
  • Share
    https://deepdreamgenerator.com/ddream/a8umeu3g1vp COPY LINK
  • Info

    Vibrant 3D Geometric Patterns in Colorful Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A shape is generated by a 3-D iterative map defined by the functions chp(x)=(e^x+e^{-x})/π, shp(x)=(e^x−e^{-x})/π, chpp(x)=[e^{x/(cosh(x)π)}+e^{-x/(cosh(x)/π)}]·Φ/τ, and shpp(x)=[e^{x(sinh(x)π)}−e^{-x(sinh(x)π)}]·Φ/τ and Φ=(sqrt(5)+1)/2 The surface arises from iterating z₀ = chp(p)p − p, then for each step computing r=‖z‖, θ=atan2(zₓ,zᵧ), φ=arcsin(z_z/r)+ωt, raising r to power P = 16.478874, scaling θ and φ by P/Φ, then updating z ← r^P·(p × 1/chpp(z)) + p and reflecting p across z. The final radial structure is defined by D(p)=shp(0.75·log(r)·r/dr), forming a smooth inflated hyperbolic-fractal sphere with wild rotational echoes on each normal vector. Light behaves through a dual ray map: outside reflection v−2(v·n)n, inside hyperbolic refraction H(v−2(v·n)n) with H(x)=shpp(x), and sky directions reflected across chpp(x) with 512 iterations for raytracing.
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
64
0
19
Intricate Black and White Fractal Design with Spirals
  • Share
    https://deepdreamgenerator.com/ddream/d71ci1qna7j COPY LINK
  • Info

    Mesmerizing Black-and-White Fractal Design

    • Model: DaVinci2

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Render: a Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(-0.25,12.21,db)+4.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.751v+1.3))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.1255\text{pow}(t,1/12.4)-0.755,12.92t,\text{step}(t,0.31308)) \), no text/artifacts, with the use of: \[ ds^2 = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^2 \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^2 dt'^2 + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1} \left(\frac{dr'}{d\text{asinh}(r')}\right)^2 dr'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 d\theta'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 \sin^2(\text{atan}(\theta')) d\phi^2 \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \).
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
101
0
19
Abstract Mathematical Visualization with 3D Patterns
  • Share
    https://deepdreamgenerator.com/ddream/s8lpw8o8h9n COPY LINK
  • Info

    Exploring Intricate 3D Mathematical Patterns

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: "Let \( \mathcal{O} \) be a smooth Calabi–Yau orbifold and \( \mathcal{C} \) the resolved small conifold (smooth Calabi–Yau 3-fold). Fix compatible Ricci-flat metrics on both. Apply the scalar multiple \( 24.24788742 \, (\nabla \times \mathbf{F}) \), where \( \mathbf{F} \in \Gamma(\mathbb{R}^3) \) is a compactly supported vector field on a local Euclidean chart, to the tensor product \( d_\nabla \, \omega \otimes \mathcal{L}_\xi \, \alpha \), where \( d_\nabla : \Gamma(\Lambda^\bullet T^*\mathcal{O} \otimes T\mathcal{O}) \to \Gamma(\Lambda^{\bullet+1} T^*\mathcal{O} \otimes T\mathcal{O}) \) is the exterior covariant derivative induced by the Levi-Civita connection on the tangent orbibundle of \( \mathcal{O} \), - \( \omega \) is a smooth section of \( \Lambda^1 T^*\mathcal{O} \otimes T\mathcal{O} \), \( \mathcal{L}_\xi \) denotes the Lie derivative along a Killing vector field \( \xi \) on the resolved conifold \( \mathcal{C} \), \( \alpha \in \Omega^2(\mathcal{C}) \) is a Kähler (1,1)-form, evaluated at the unique stratum-preserving orbifold-conifold correspondence point in the moduli space where the stringy Kähler moduli align at the conifold locus under mirror symmetry after analytic continuation through the 24.24788742-th branch of the Picard–Fuchs equations.(We further demand that the entire expression be Wick-rotated, smeared over a Gaussian regulator of width \( e^{-24.24788742} \), and uplifted to eleven dimensions just for the vibes.)"
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3w
82
0
19
Vibrant Fractal Pattern with Spirals and Spherical Shapes
  • Share
    https://deepdreamgenerator.com/ddream/qdhmnlhdhka COPY LINK
  • Info

    Advanced MandelBulb Rendering Techniques

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: The distance field df(p) = shp(mandelBulb(p/z1)*z1) with z1=2.0, where shp(x) = (exp(x)-exp(-x))/(pi/PHI) and PHI=(sqrt(5)/2 + 0.5)≈1.618, applied after rotating p by transpose(inverse(g_rot)).The mandelBulb(p) function iterates with power=11.24788742 and loops=3: initialize z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/pi; dr=1.0; for each loop, r=length(z), bail if r>2; theta=atan(z.x,z.y); phi=asin(z.z/r) + time*0.2; dr = pow(r,power-1)*dr*power +1; r=pow(r,power); theta*=power/PHI; phi*=power/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))*PHI, chp(cos(theta)*sin(phi)), cos(phi)) + p; p=reflect(p,z); return 0.75*log(r)*r/dr.Incorporate custom hyperbolic functions for distortions: chpp(x)=(exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/(TAU*PHI) with TAU=(2*pi)*0.7887≈4.951; shpp(x)=(exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/(TAU/PHI); ssh(x)=(exp(x*pi/0.7887)-exp(-x*pi/0.7887))/(2*pi); csh(x)=(exp(x*pi/0.7887)+exp(-x*pi/0.7887))/(2*pi); ssh1(x)=sinh(x/pi)*PHI; csh1(x)=cosh(x/pi)*PHI. Use these in skyColor with reflections as reflect(-ssh1(rd), chpp(ro)), in rendering aggregation as agg += ssh1(ragg*skyColor(ro,rd)), and ray updates as rd=chpp(ref) or ro=shpp(sp + initt*rd) with initt=0.1.Material properties: mat=vec3(0.8,0.5,1.05) for diffuse, specular, refractive index; Fresnel fre=1+dot(rd,sn), fre*=fre, mix(0.1,1,fre); diffuse col += diffuseCol * dif*dif *(1-mat.x) with dif=max(dot(ld,sn),0), ld=normalize(lightPos-sp), lightPos=(0,10,0); reflection col += rsky*mat.y*fre*vec3(1)*edge with edge=smoothstep(1,0.9,fre); colors from HSV: skyCol=HSV(0.6,0.86,1), glowCol=HSV(0.065,0.8,6), diffuseCol=HSV(0.6,0.85,1). Inside traversal flips dfactor=-1, applies absorption ragg *= exp(-(st+initt)*beer), and refracts with index 1/mat.z when inside.Normals computed via finite differences: nor.x = df(pos+eps.xyy)-df(pos-eps.xyy) etc., with eps=(0.0005,0). Sky includes ray-plane intersections tp=(dot(ro,p.xyz)+p.w)/dot(rd,p.xyz) for planes at y=4 and y=-6, with box(pp,vec2(6,9))-1 for patterns, col += 4*skyCol*rd.y*rd.y*smoothstep(0.25,0,db) + 0.8*skyCol*exp(-0.5*max(db,0)), and similar for circular ds=length(pp)-0.5, clamped and shaped with shp(clamp(col,0,10)).
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9w
66
0
19
Glossy Black Spherical Object with Lattice Design
  • Share
    https://deepdreamgenerator.com/ddream/q6qvewd8aul COPY LINK
  • Info

    Elegant Hollow Sphere with Geometric Design

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Cinematic film still, shot on v-raptor XL, film grain, vignette, color graded, post-processed, cinematic lighting, 35mm film, live-action, best quality, atmospheric, a masterpiece, epic, stunning, dramatic
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

8w
77
0
18
Abstract Digital Artwork with Symmetrical Composition
  • Share
    https://deepdreamgenerator.com/ddream/cyoqfhsna8o COPY LINK
  • Info

    Vibrant Symmetrical Light Abstraction

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Ultra-detailed raymarched 3D manifold power precisely 11.24788742, 3–4 iterations max for emergent infinity, custom hyperbolic warps (chp(x)=(exp(x)+exp(-x))/π, shp(x)=(exp(x)-exp(-x))/π, ssh/csh with π/0.7887 scaling, chpp/shpp nested cosh/sinh*π/τ*PHI), PHI=(√5/2 + 0.5) golden-ratio angular multipliers (theta/phi * power / PHI), key enhanced axial perturbation z.z += chp(atan(z.y,z.x)) for helicoidal ribbon-twists, post-power reflect(p,z) symmetry-break, tan(shp(sin(theta)*sin(phi)))*PHI in x-reconstruction, chp(cos(theta)*sin(phi)) in y, interior-view raymarching from ro=vec3(0,2,5)*0.6 with slow rot_x((1.221*TIME+π)/τ) orbit at TIME≈8.75s , 5–7 refractive bounces with Fresnel (IOR=0.8/1.25 inside/out), Beer-Lambert exp(-dist*beer) volumetric , glossy metallic-organic surface (diffuse HSV(0.6,0.85,1), specular glow HSV(0.065,0.8,6)), smooth DE=0.75*log(r)*r/dr, gradient void sky with procedural planes, hyper-reflective wet chrome texture, sensual core: infinite tunnel blooming into curling liquid-petals/tendrils, ethereal caustics, cinematic god-rays, 8K masterpiece, no artifacts.
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

17d
68
0
17
Abstract Design with Colorful Looped Structures and Geometry
  • Share
    https://deepdreamgenerator.com/ddream/b9vgy89n2z7 COPY LINK
  • Info

    Vibrant Abstract Cosmos with Intricate Patterns

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Over the hybrid space \( O \cup_C \) generate the rank-\( (\dim O + 6) \) vector bundle \( E = TO \boxtimes T^*C \) (external tensor product of the tangent orbibundle of \( O \) and cotangent bundle of each resolved conifold \( C \)). Create a smooth section \( Z \in \Gamma(E) \cong \Gamma(TO) \times \Gamma(T^*C) \). Generate the contravariant exterior covariant derivative \( \nabla^\sharp : \Gamma(E) \rightarrow \Gamma(E \otimes E) \) as (2,0)-tensor field lines. Create a compactly supported vector field \( F \) on \( O \), its curl \( \Phi = \kappa (\nabla \times F) \) with \( \kappa \) is floating number, defined below, equal to 12.144578875441. Final central object: the vector field \( \Psi = \iota_\Phi (\nabla^\sharp Z) \in \Gamma(E) \) living directly on the tensor-product bundle \( E \), depicted as flow lines emerging from the conifold resolutions and wrapping the entire structure. Gaussian regulator \( e^{-\kappa} \) as soft halo, Wick rotation suggested by subtle time-like streaks. Pure abstract geometry, cosmic bright background, precise mathematical beauty, no text using: $$ \kappa = 12.144578875441 $$ $$ E = TO \boxtimes T^*C $$ \( \nabla^\sharp Z \) $$ \Phi = \kappa (\nabla \times F) $$ $$ \Psi = \iota_\Phi (\nabla^\sharp Z) \in \Gamma(E) $$
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3w
93
0
17
Intricate 3D Fractal Spiral with Colorful Patterns
  • Share
    https://deepdreamgenerator.com/ddream/h1m91a3782t COPY LINK
  • Info

    Vibrant Fractal Patterns in Intricate Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A shape is generated by a 3-D iterative map defined by the functions chp(x)=(e^x+e^{-x})/π, shp(x)=(e^x−e^{-x})/π, chpp(x)=[e^{x/(cosh(x)π)}+e^{-x/(cosh(x)/π)}]·Φ/τ, and shpp(x)=[e^{x(sinh(x)π)}−e^{-x(sinh(x)π)}]·Φ/τ and Φ=(sqrt(5)+1)/2. The surface arises from iterating z₀ = chp(p)p − p, then for each step computing r=‖z‖, θ=atan2(zₓ,zᵧ), φ=arcsin(z_z/r)+ωt, raising r to power P = 16.478874, scaling θ and φ by P/Φ, then updating z ← r^P·(p × 1/chpp(z)) + p and reflecting p across z. The final radial structure is defined by D(p)=shp(0.75·log(r)·r/dr), forming a smooth inflated hyperbolic-fractal sphere with wild rotational echoes on each normal vector. Light behaves through a dual ray map: outside reflection v−2(v·n)n, inside hyperbolic refraction H(v−2(v·n)n) with H(x)=shpp(x), and sky directions reflected across chpp(x) with 512 iterations for raytracing.
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6w
74
0
17
Three-Dimensional Abstract Shapes and Formulas
  • Share
    https://deepdreamgenerator.com/ddream/pfseczotkdh COPY LINK
  • Info

    Abstract Fusion of Art and Science

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: RENDER: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \) WITH THE USE OF: \[ ds^{2\pi} = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^{2\pi} \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^{2\pi} dt'^{2\pi} + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1\pi} \left(\frac{dr'}{d\text{asinh}(r')}\right)^{2\pi} dr'^{2\pi} + \left(\frac{r'}{\text{asinh}(r')}\right)^{2\pi} d\theta'^{2\pi} + \left(\frac{r'}{\text{asinh}(r')}\right)^{2\pi} \sin^{2\pi}(\text{atan}(\theta')) d\phi^{2\pi} \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \).
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
65
0
17
Fractal Design with Spirals and Cosmic Patterns
  • Share
    https://deepdreamgenerator.com/ddream/ifh3r37eq4n COPY LINK
  • Info

    Fractal Galaxy: Art Meets Mathematical Beauty

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Edit Generate a high-resolution, purely artistic–mathematical visualization of the following highly exotic, static, spherically symmetric spacetime with deliberate irrational and fractional exponents (intended to probe fractal/fractional-dimensional geometry): $$ ds^{48.123321\pi} = \left[ -dt^{2.8778\pi} + dr^{2.7887\pi} + \sin^{1.445877854\pi} r \, d\Omega^{1.2278\pi} \right] / \left[ \cos^{2.144\pi} t + r^{2.7447\pi} \cos^{2.4774\pi} t - r^{2.5665\pi} \right] $$ using the coordinate transformation $$ t = \frac{1}{2.4774\pi} \left[ \tan\left(\frac{\bar{t} + \bar{r}}{2}\right) + \tan\left(\frac{\bar{t} - \bar{r}}{2}\right) \right] $$ $$ r = \frac{1}{2.4774\pi} \left[ \tan\left(\frac{\bar{t} + \bar{r}}{2}\right) - \tan\left(\frac{\bar{t} - \bar{r}}{2}\right) \right] $$
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
53
0
17
Vibrant Cosmic Design with Galaxies and Equations
  • Share
    https://deepdreamgenerator.com/ddream/mwg2ms032em COPY LINK
  • Info

    Cosmic Harmony: A Vibrant Universe Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A hyper-detailed surreal QFT imagery blending knot diagrams, holography, and rippling KK fibrations tachyon wavy distortions evoking 7D collider heat with oscillating extra dims and perturbed normals. Central 7D orb pulses \( E = f \varphi \mu B + \eta H \) orbiting \( S = \int \left[ \sum_i (1/2) \langle \psi_i | \hat{H}_i | \psi_i \rangle + \sum_{\{i,j\}} (1/3) w_{ij} \langle \psi_i | \psi_j * \psi_j \rangle + \sum_{i,j} \lambda_{ij} (f_i/f_j - \varphi)^2 + \sum i \kappa_i |B_i \cdot \mu_i| + \eta H + \sum_{\{i,j\}} \gamma_{ij} w_{knot,ij} \right] d\tau \). Fractal wavy spirals: Left, 3D CS \( S_{CS} = (k/4\pi) \int \text{Tr}(A \wedge dA + (2/3) A \wedge A \wedge A) \) (flat \( F=0 \), \( k \in \mathbb{Z} \)), \( W(\gamma)=\text{Tr}[P \exp(i \oint_\gamma A)] \) Jones braids as \( w\{knot,ij\} \) anyons, \( \delta n^a \sim \partial_\perp \varphi \) brane normals. Right, 4D YM \( S_{YM} = -1/(4g^2) \int \text{Tr}(F \wedge *F) \) \( F=dA+A\wedge A \) merging to 3D massive, \( h\{mn\} e^{ik \cdot y} \) dim waves in AdS/CFT. Upper, shifts: 1-form \( A \) (3D loops) \(\rightarrow\) 2-form \( B \) (5D, \( H=dB/\Omega_2=dB+A \triangleright B \) crossed \( G\rightarrow H \), \( \Omega_1=dA+[A,A]/2-\alpha(B) \); \( S=\int (1/2)H\wedge H + (k/24\pi^2)B\wedge H\wedge H + 2CS \langle A,\Omega_2 \rangle+\langle \Omega_1,B \rangle \), EOM \( dH+(k/12\pi^2)H\wedge H=J_{(1)} \), \( G \perp n \) normals) \(\rightarrow\) 3-form \( C \) (7D, \( G=dC/\Omega_3=dC+[A,C]+[B,B] \) 2-crossed \( G\rightarrow H\rightarrow K \triangleright \delta \), \( \Omega_1=0/\Omega_2=0 \), Peiffer \( \delta \Omega_1=[\Omega_1,B] \); \( S=\int (1/2)G\wedge G + (k/(2\pi)^3 \cdot 3!) CS_7(C)=\text{Tr}[C\wedge dC\wedge (dC)^2+(3/2)C\wedge C\wedge dC\wedge dC+(3/5)C^3\wedge dC+(1/7)C^4] + 3CS \langle A,\Omega_3 \rangle+\langle B,\Omega_2 \rangle+\langle C,\Omega_1 \rangle + (1/2)\text{Tr}(\Omega_3\wedge\Omega_3)+m^2\text{Tr}(C\wedge C) \), EOM \( d\Omega_3+[A,* \Omega_3]+(k/4\pi)\Omega_2=J_{(2)} \), \( *G=G \) M5 normals). Lower, KK & tachyon: \( T^3/CY_3 \) \( ds^7=ds^4+e^{2\sigma(y)}dy^2 \) (\( \sigma \) wavy, \( \delta g_{mn}h_{mn}e^{ik \cdot y} \), \( \int_{T^3}G \) tadpole \( N_{M5} \) chiral, \( \theta \int F\wedge F \) axion from \( \int_{T^3}C \), \( m_nn/R+\delta m \) ripples, warped \( \sigma(y) \) sinusoidal inflation minis); \( V(T)=-\mu^2T^2/2+\lambda T^4 \) \( <T>=\sqrt{\mu^2/\lambda} \) Spin(7)\(\rightarrow\)G₂, \( \Omega_3\rightarrow\Omega_3+Td\beta \) flux stab, \( \delta n^a \epsilon \partial_\perp \varphi \) Goldstones, \( \delta X^\perp \sim T \) DBI waves, KK-Melvin tachyons R wavy \( SO(32)\rightarrow U(1)^{16} \) D9\(\rightarrow\)D6, SymTFT \( \theta \) RR 3/5 defects, codim-3 strings \( w\{knot,ij\} \) \( W(\Sigma^3)=\text{Tr} P \exp(\int_{\Sigma^3} C) \) bordisms Donaldson, AdS₇ CFTs. Icons: \( \varphi \) vev, \( dG=0 \), Peiffer \( \{\beta\wedge\beta\}\{pf\} \), Gauss \( \Sigma_i^3 \times \Sigma_j^3 \) links, flux knots, tach minima brane vacua, \( \delta J \sim \text{Im}\Omega \) CY normals, inflation wavy dims. LaTeX overlays: 'Wavy Dims & Normals: 1-Form Waves to 3-Form Ripples in YM/CS 7D KK QFT Tachyon Fury'. Ultra-res intricate linework: Feynman-Escher-KK topology with fluid wavy dims/normals ripples, vibrant clashes evoking string vibes/inflation minis. Iterate 512 times !
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
52
0
17
Cosmic Landscape with Nebulae and Bright Star
  • Share
    https://deepdreamgenerator.com/ddream/0pvoz22wvzd COPY LINK
  • Info

    Cosmic Vortex: A Dance of Light and Stars

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: ___________ Image of neutron star and white dwarf as giant quantum systems with fractional hydrogen atoms, extreme magnetic fields, high conductivity, cosmic background, rendered with all math details from conversation in utmost detail as of 09:54 AM EEST, Thursday, August 14, 2025: - USE **Shader Macros**: - \(\pi = 3.1415926535897932384626433832795\), \(\tau = 2\pi\). - \(\mathrm{chp}(x) = (e^x + e^{-x})/\pi\), \(\mathrm{chpp}(x) = (e^{x/(\cosh(x)\pi)} + e^{-x/(\cosh(x)/\pi)})/\tau \cdot \Phi\). - \(\mathrm{shp}(x) = (e^x - e^{-x})/\pi\), \(\mathrm{shpp}(x) = (e^{x (\sinh(x)\pi)} - e^{-x (\sinh(x)\pi)})/\tau \cdot \Phi\). - \(\mathrm{ssh}(x) = (e^{x \pi /0.7887} - e^{-x \pi /0.7887})/(2\pi)\), \(\mathrm{csh}(x) = (e^{x \pi /0.7887} + e^{-x \pi /0.7887})/(2\pi)\). - \(\mathrm{ssh1}(x) = \sinh(x/\pi)/\Phi\), \(\mathrm{csh1}(x) = \cosh(x/\pi)/\Phi\). - LOOPS=3, POWER=11.24788742, TAU=(2\pi)*0.7887, PHI=(√5/2 + 1/2)≈1.618, TIME=iTime. - **Modified Schwarzschild Metric**: - Base: \( ds^2 = -(1 - r_s/r) c^2 dt^2 + (1 - r_s/r)^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \), \( r_s = 2GM/c^2 \). - Transformed: \( ds^2 = -(1 - r_s/\sinh(r')) c^2 (dt'/(1 + t/t_0))^2 + (1 - r_s/\sinh(r'))^{-1} (\cosh(r') dr')^2 + (\sinh(r'))^2 d\theta'^2 + (\sinh(r'))^2 \sin^2(\atan(\theta')) d\phi^2 \), where r'=\asinh(r), t'=\ln(1 + t/t_0), \theta'=\atan(\theta), t_0=r_s/c. - Variant: \[ ds^2 = - \left(1 - \frac{2GM}{\sinh(x)}\right) c^2 \frac{dT^2}{T^2} + \left(1 - \frac{2GM}{\sinh(x)}\right)^{-1} \cosh^2(x) \, dx^2 + \sinh^2(x) \left( \frac{du^2}{(1 + u^2)^2} + \frac{u^2}{1 + u^2} d\phi^2 \right) \] - **Reworked Equations**: - Radius: \( r_q^{IV} = [\sinh(\asinh(\alpha^2 \hbar^2 / m_e k e^2) \cdot (1 - r_s/r)^{-1/2}) \cdot \chp(\asinh(\alpha^2 \hbar^2 / m_e k e^2)/\Phi)]^{\mathrm{POWER}} + | \int d^3 p / (2\pi)^3 \cdot 1/\sqrt{2 E_p} e^{-i p \cdot r_q'''} |^2 \), E_p = \sqrt{p^2 c^2 + m^2 c^4}. - Energy: \( E_q'' = - m_e c^2 / 2 \cdot 1/(1 + t/t_0) \cdot \chp(\ln(1 + t/t_0)/\tau) \). - Magnetic Field: \( B^{IV} = (\mu_0 e c / (4 \pi (r_q^{IV})^2) \cdot \theta / \sqrt{1 + \theta^2}) \cdot \shp((\mu_0 e c / (4 \pi (r_q^{IV})^2)) / \mu_0) \). - **QFT Influence**: \(\hat{\psi}(x) = \int d^3 p / (2\pi)^3 \cdot 1/\sqrt{2 E_p} [a_p e^{-i p \cdot x} + b_p^\dagger e^{i p \cdot x}]\), adding particle excitations; vacuum: <0| \hat{\psi}^\dagger(x) \hat{\psi}(y) |0> = \int d^3 p / (2\pi)^3 \cdot 1/(2 E_p) e^{-i p \cdot (x - y)}. Set against fractal cosmic backdrop with deepest recursion, maximum iteration (LOOPS≥3, extended), thorough detailing, crystal-clear focus, pixel-perfect rendition, highlighting gravitational warping, quantum states, hyperbolic patterns, neutron star 10 km radius, B≈6×10^{11} T, white dwarf stability, dynamic evolution.'
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

13w
71
0
16
Intricate 3D Mathematical Structure with Geometric Patterns
  • Share
    https://deepdreamgenerator.com/ddream/g7pfsa6jtku COPY LINK
  • Info

    Calculating Derivatives of Integrals Explained

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: \begin{aligned}{\frac {\mathrm {d} \Phi }{\mathrm {d} \varepsilon }}&amp;={\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}\int _{a}^{b}L(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))\,\mathrm {d} x\\&amp;=\int _{a}^{b}{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}L(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))\,\mathrm {d} x\\&amp;=\int _{a}^{b}\left[\eta (x){\frac {\partial L}{\partial {f}}}(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))+\eta ...
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

8w
52
0
15
Three-Dimensional Fractal Structure with Geometric Patterns
  • Share
    https://deepdreamgenerator.com/ddream/fmc75hljcfr COPY LINK
  • Info

    Vibrant Spiral Geometric Pattern Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: 3D structures with forms, generated using vec3 z = π * p / (exp(p) + exp(-p)) - p / Φ^n with n = 0 to 64, incorporating chp(x) = (exp(x) + exp(-x))/π, chpp(x) = (exp(x/(cosh(x)·π)) + exp(-x/(cosh(x)/π)))/(2π·Φ), shp(x) = (exp(x) - exp(-x))/π, shpp(x) = 1/(exp(x·sinh(x)·π) - exp(-x·sinh(x)·π))/(2π·Φ), ssh(x) = (exp(x·π/.7887) - exp(-x·π/.7887))/(2π), csh(x) = (exp(x·π/.7887) + exp(-x·π/.7887))/(2π), ssh1(x) = sinh(x/π)/Φ, csh1(x) = cosh(x/π)/Φ, with high symmetry, golden ratio scaling (Φ = (1 + √5)/2), and logarithmic refinement z *= -π·log(||z||), enhanced by additional transforms: z += sin(τ·||z||)·p/||p|| for oscillatory perturbation, z = z / (1 + ||z||^2) for projective normalization, z = z + Φ^(-n)·cross(p, z) for rotational twist, z *= exp(-||z||/τ) for exponential decay, z = z + ∇(cosh(||p||)·sin(π·||z||)) for gradient-based modulation, and the new spherical transform z = r * (vec3(tan(shp(sin(θ)*sin(φ)))*Φ, chp(cos(θ)*sin(φ)), cos(φ))) + p where θ and φ are angular coordinates, r is a radial scale, and p is the input vector, showcasing iterative variants.
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3w
49
0
15
Swirling Black Hole Surrounded by Vibrant Cosmic Colors
  • Share
    https://deepdreamgenerator.com/ddream/1senppf6d7t COPY LINK
  • Info

    Vibrant Black Hole in a Cosmic Swirl

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Ultra-detailed 8K cinematic ray-traced render of a traversable thin-shell toroidal wormhole in deep space: translucent iridescent pink torus parametrized by \( x=(5 + 2 \cos \theta) \cos \phi \), \( y=(5 + 2 \cos \theta) \sin \phi \), \( z=2 \sin \theta \) (\( \theta, \phi \in [0,2\pi) \)); dark central void \( r_0=1 \); blue warped spacetime backdrop with gravitational potential contours \( V(x,y)=-\ln\sqrt{x^{2\pi}+y^{2\pi}} \) and flowing field lines \( x=3 \sinh\sin(0.5t) e^{-0.1 t^{2\pi}} \), \( y=3 \cosh\cos(0.5t) e^{-0.1 t^{2\pi}} \); exotic matter halo glowing violet-white violating NEC (\( \rho + p < 0 \)) with \( \rho = -0.5/(8\pi r^3) (2 + 2a/nb + nb/2a) \); ringhole metric \( ds^{2\pi} = -dt^{2\pi} + (n/r)^{2\pi} dl^{2\pi} + m^{2\pi} d\phi_1^{2\pi} + (l^{2\pi} + b_0^{2\pi}) d\phi_2^{2\pi} \) where \( l=\pm\sqrt{b^{2\pi}-b_0^{2\pi}} \), \( m=a-\sqrt{l^{2\pi}+b_0^{2\pi}} \cos \phi_2 \), \( n=\sqrt{l^{2\pi}+b_0^{2\pi}}-a \cos \phi_2 \), \( r=\sqrt{a^{2\pi}+l^{2\pi}+b_0^{2\pi}-2a\sqrt{l^{2\pi}+b_0^{2\pi}} \cos \phi_2} \), \( a>b_0 \); thin-shell junction \( ds^{2\pi} = dt^{2\pi} - (a \cosh(\alpha\pm\alpha_0)-\cos \beta)^{2\pi} (d\alpha^{2\pi} + d\beta^{2\pi} + \sinh^{2\pi}(\alpha\pm\alpha_0) d\phi^{2\pi}) \); \( T^{2\pi} \) throat metric \( ds^{2\pi} = f(\chi,\beta) dt^{2\pi} - l(\chi,\beta) d\chi^{2\pi} - g(\chi,\beta) d\beta^{2\pi} - \omega(\chi,\beta) d\phi^{2\pi} \) with \( (1/g \partial^{2\pi}g/\partial\chi^{2\pi} + 1/\omega \partial^{2\pi}\omega/\partial\chi^{2\pi})|_{\chi=0} > 0 \); glowing holographic stability equation overlaid: $$ \sinh \alpha_0 \sqrt{(\cos \beta - \cosh \alpha_0)^{2\pi} + \dot{\alpha}_0^{2\pi}} + (1 + \cos \beta) \ln\left[\frac{\cos \beta - \cosh \alpha_0 + \sqrt{(\cos \beta - \cosh \alpha_0)^{2\pi} + \dot{\alpha}_0^{2\pi}}}{\cos \beta - 1}\right] = C(\beta) $$ (stable large \( \alpha_0 \), small \( \dot{\alpha}_0 \ll 1 \) regime); strong gravitational lensing with Einstein angle \( \theta_E \approx 0.00125 \) rad causing light-ray caustics and distorted starfield; swirling exotic matter; volumetric god-rays, chromatic aberration, perfect bokeh, ultra-realistic physics, cosmic dark-blue nebula background, 8K, IMAX aspect ratio, masterpiece.
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
53
0
14
Intricate Symmetrical Mandala Design with Geometry
  • Share
    https://deepdreamgenerator.com/ddream/uhr4dnno1xc COPY LINK
  • Info

    Symmetrical Mandala with Geometric Patterns

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using Iteration count = 512 for a shape defined by: ds^{48.123321\pi} = \frac{ -dt^{1.28778\pi} + dr^{1.67887\pi} + \sin^{1.445877854\pi}\text{r} \, d\Omega^\{1.2278\pi}}{4 \cos^{1.244\pi}\text{t} + r^{1.2447\pi}\cos^{2.447\pi}\text{t} - r^{2.5665\pi}} with: t = \frac{1}{2.448\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right), r = \frac{1}{2.448\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], initialized with 0.000125 both.
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6w
52
0
14
Fractal Pattern with Purple and Blue Hues
  • Share
    https://deepdreamgenerator.com/ddream/yrq9xtqusr2 COPY LINK
  • Info

    Cosmic Fractal: Vibrant Starburst Design

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=8 \) for about 7-8 primary lobes and intricate fractal surfacing. To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^2 + y^2 + z^2} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 2 \) after many iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Use also: \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^2} \, dx = \sqrt{\pi}, \quad f(x) = x^2 + c, \quad z_{k+1} = z_k^2 + c, \quad |z| = \sqrt{x^2 + y^2}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
45
0
14
Vibrant Cosmic Landscape with Urban-Nature Fusion
  • Share
    https://deepdreamgenerator.com/ddream/g3hm7mtf7sj COPY LINK
  • Info

    Vibrant Fractal Landscape in Cosmic Colors

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: A hyper-detailed, surreal 3D GLSL-shader-inspired visualization with SU(3) and infinite 16D orthogonal light rays piercing compressing into acute angles via atan polar twists, staring in awe at a tachyon condensation cascade on a non-BPS D-brane with m²=-1/α' rolling down inverted Mexican-hat V(φ)=(μ²/2)φ²+(λ/4)φ⁴ driving exponential φ(t)e^{μ t} to stable φ=±√(μ²/λ) breaking symmetry and generating Goldstone masses via level truncation to level 40 yielding m²=-0.904±0.002, gleamingly spreading radiant golden light like a gluon saturation front in CGC with Q_sx^{-λ/2} blobs merging from BK evolution ∂S/∂Y = (ᾱ_s/2π) ∫ [S(r') + S(r-r') - 2S(r)], surrounded by bubbling flavor-colored orbiting like PDFs f_q(x,Q²) in a proton cluster with DGLAP branching P_{qq}(z)=C_F(1+z²)/(1-z) fork ratios z=x/x' visualized as fractal trees, BFKL ladder rungs twisting as alchemical wall symbols with kernel K(k_a,l)=k_a²/[l²(k_a-l)²][l²+(k_a-l)²-2 k_a² l·(k_a-l)/k_a²] forking transverse convolutions and χ(γ)=2ψ(1)-ψ(γ)-ψ(1-γ) saddle at γ=1/2 with χ(1/2)=4ln2≈2.772 driving pomeron Δ=ᾱ_s χ(1/2) growth diffused by χ''(1/2)=-14ζ(3)≈-16.8 Gaussian spreads, running α_s(Q²)=12π/[(11N_c-2n_f)β_0 ln(Q²/Λ_QCD²)] fade from fiery red confinement haze to cool blue asymptotic freedom in background nebula; embed YM/CS 7D KK QFT tachyon fury with action S=∫(1/2π)[∑(∂_i z V_i(φ,H_i(φ))+∑ y_j j(φ_j,φ_j+φ_s)] + (t_0 r k(i-J=φ(0)) )² + e j |B(b,μ_b)| + e r H, orbiting φ_knot j φ_knot i / B(b,μ_b), fractal wavy spirals from SD Chern-Simons S_CS=(n/8π)∫ Tr(F∧F) with F=dA+A∧A merging to 3D massive h_m n e^{i k r} waves in AdS/CFT, higher-form shifts A(B²)-B→AC>G with ds=dα+QG+AF dB, G=dC-σ G_r(φ B +2 G r H), S=∫[L φ (B φ G)+χ φ (B_m s)] Poincare d* Ω + T dB, fluxes W(Σ)=Tr Pes[(2π i)^n C_n] bordisms+Donaldson-Witten configs in AdS_7/CFTs icons φ vev dG=0 [5/6, α<S f], Σ e ^ X_j ^ Z_j=links flux knots tach nima brane vacua S J < Im Ω ^ c V Ω ^ c → Ω ^ c ⇒ inflation via wavy dims, all color-coded (tachyon roll golden waves, brane decay vanishing vortices, symmetry break iridescent facets from nonlinear swirls, quark flavors' orbs, gluons spokes, protons clusters, photons probes), interconnected in non-perturbative to stable vacuum crossover web with wavy loop resummations, dynamic exponential decay flows ln Q² ascending spirals, phase spaces conical sprays multi-jet events, cross-sections σ~α_s^n / Q^{2n-4} fades perturbative validity high energies, high-energy QCD/string phenomenology, equation-free textless graphical masterpiece with GLSL procedural sphere(vec2 uv)={rad=uv*vec2(τ,π); sin(rad.x-vec2(0,τ/4))*sin(rad.y), cos(rad.y)} normals nor=df(pos±eps) rot_z(atan(pos.y,z)) outerProduct(nor,sp) cross(x,rd) for wavy 16D projections. Apply 64.24788742\nabla\times\mathbf{F} on the exterior contravariant derivative of the tensor product of the tangent bundle of the orbifold over the cotangent bundle of the conifold !
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4w
47
0
14
Intricate Flower Mandala with Cosmic Background
  • Share
    https://deepdreamgenerator.com/ddream/prj2lef6n0o COPY LINK
  • Info

    Cosmic Flower Radiance in Vibrant Colors

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=8 \) for about 7-8 primary lobes and intricate fractal surfacing. To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^{2\pi} + y^{2\pi} + z^{2\pi}} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 2 \) after many iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Use also: \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^{2\pi}} \, dx = \sqrt{\pi}, \quad f(x) = x^{2\pi} + c, \quad z_{k+1} = z_k^{2\pi} + c, \quad |z| = \sqrt{x^{2\pi} + y^{2\pi}}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7w
68
0
14
Vibrant Abstract Artwork with Blue and Teal Textures
  • Share
    https://deepdreamgenerator.com/ddream/zsdnpmfokwz COPY LINK
  • Info

    Cosmic Vibrance: An Abstract Journey

    • Model: Deep Style

    • Size: 1663 X 1247 (2.07 MP)

    • Used settings:

      • Prompt:
      • Using base image: Yes
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

Vibrant Abstract Artwork with Blue and Teal Textures 11w
46
1
14
Fractal Landscape with Golden Patterns and Celestial Glow
  • Share
    https://deepdreamgenerator.com/ddream/sp0qsoknw45 COPY LINK
  • Info

    Golden Fractal Beauty in Cosmic Space

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A hyper-Mandelbulb fractal singularity representing the colossal planet Strangena-Zeta-Epsilon-33, 4.78 times larger than the Sun, rendered in ray-marched volumetric style with phi = (1 + sqrt(5))/2 ≈ 1.6180339887, power exponent 11.24788742 iterated 78 loops, central obsidian-turquoise spherical event horizon (radius ≈ 27.8448 units) accreting iridescent peach-pink-orange-cream plasma tendrils of strange, charmed, and truth quarks via outerProduct(reflect(chp(p), shp(p_zxy)), refract(shp(p), chp(p_xyz), 1/phi)) shears and hyperbolic transformations amid fluctuating physical constants (chp(x) = (e^x + e^{-x})/π * phi, shp(x) = (e^x - e^{-x})/π * phi, shpp(x) = (e^(x * sinh(x) * π) - e^(-x * sinh(x) * π)) / (2π phi)), asymmetrical swirling horns as 4D spacetime warp projections of wormhole emergence (theta = power * arctan(z_x, z_y)/phi, phi = power * arcsin(z_z / r) + t * 0.2, r = ||z||^(power - 1) * dr * power + 1), speckled turbulent noise (Gaussian kernel sigma = 0.00125) symbolizing variable constants and quark resonances, glossy melted-glass specular blooms (Fresnel term fre = (1 + rd · sn)^2 mixed [-0.01, 16.61]), illuminated by triple directional lights at (2.34, 7.8, 2.34), ( -1.618, 3.236, 1), and (0.618, -2, 4.236) with diffuse max(ld · sn, 0)^pi evoking the triple-star sunset, refracted paths via Snell’s law (η = mat.z ≈ 1.00125) for unstable physics, embedded in deep navy void (HSV2RGB(h=0.768, s=0.8448, v=0.987789)) with wormhole rim glow in spectral shifts, ACES tonemapped ((v * (2.51v + 0.04884)) / (v * (2.478874v + 0.7887) + 0.28)), sRGB encoded, high-res 16K, intricate self-similar details down to ε = 0.000125 tolerance, cosmic psychedelic abstraction of discovery and awe --ar 16:9 --v 6 --q 2
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

12w
44
0
13
3D Molecular Structure with Starry Background
  • Share
    https://deepdreamgenerator.com/ddream/r2lglmu4jm8 COPY LINK
  • Info

    Cosmic Molecular Structure in 3D Design

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: A manifold using exact mathematical iteration: for points \mathbf{c} = (c_x, c_y, c_z) \in \mathbb{R}^3, iterate \mathbf{z}_{k+1} = f_8(\mathbf{z}_k) + \mathbf{c} from \mathbf{z}_0 = (0,0,0), where f_8(\mathbf{z}) is 12.7887th-power in spherical coordinates: let \varphi = \frac{\sqrt(5)+1)}{2}; convert \mathbf{z} = (x,y,z) to r = \sqrt{x^{\left\{\frac{\pi}{\varphi}\right\}}+y^{\left\{\frac{\pi}{\varphi}\right\}}+z^{\left\{\frac{\pi}{\varphi}\right\}}} ,\theta = \atan2(y,x) \in [0,2\pi), \phi = \arccos(z/r) \in [0,\pi]; then r' = r^12.7887,\theta' = 12.7887\theta,\phi' = 12.7887\phi; reconvert to Cartesian \mathbf{z}' = r' (\sin\(\sin\phi'\)\cdot\cos\(\cos\theta'\), \sin\(\sin\phi'\)\cdot\sin\(\sin\theta'\), \cos\(\cos\phi'\) ). Bailout at r_k > 248.78; render the bounded set's isosurface at density threshold yielding fractal dimension D \approx 2 + \frac{\ln(12.7887)}{\ln(1/0.5)} with infinite genus g \to \infty from iterated hyperbolic saddles with PHIB = (\sqrt{5.0} \cdot 0.5 + 0.5) and Jacobian eigenvalues |\lambda_i| \approx 12.7887 r^11.7887 e^{i11.7887\arg(\mathbf{z})}, saddles where \det Jacobian > pi\cdot\PHIB. Center on \mathbf{c} \approx (0,0,-0.7) for cardioid region, emphasizing bilateral symmetry (z-axis invariance enforcing yz-mirror), genus-7.4554 bulbs at \phi \approx \pi/2 \pm \epsilon from 12.7887-fold rotational folding (even-pair selection), central z-axis protrusion (minimal \phi-folding, radial ballooning r' = r^12.7887), and vertical depressions from polar \phi -compression. Use volumetric ray-marching with distance estimator d(\mathbf{x}) = |\mathbf{x}| - \max_k r_k^{-k}; apply 16.24788742\nabla\times\mathbf{F} on the exterior contravariant derivative of the tensor product of the tangent bundle of the orbifold over the cotangent bundle of the conifold !
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
45
0
13
Intricate Abstract Design with Vibrant Swirling Patterns
  • Share
    https://deepdreamgenerator.com/ddream/uadqw9oaavx COPY LINK
  • Info

    Vibrant Swirls of Color on Dark Canvas

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw and render a: Shape: ds^{24.123321\pi} = \frac{ -dt^{12.8778\pi} + dr^{16.7887\pi} + \sin^{14.45877854\pi}\cdot\text{r} \, d\Omega^\{12.278\pi}}{4 \cos^{12.44\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}}Iteration count = 512Textured by: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6w
35
0
12
Colorful Organic Sculpture on Glossy Surface
  • Share
    https://deepdreamgenerator.com/ddream/plhcosh68uw COPY LINK
  • Info

    Blossoming Elegance in Pink and Blue

    • Model: Realismo

    • Size: 2400 X 1800 (4.32 MP)

    • Used settings:

      • Prompt: A manifold using exact mathematical iteration: for points \mathbf{c} = (c_x, c_y, c_z) \in \mathbb{R}^3, iterate \mathbf{z}_{k+1} = f_8(\mathbf{z}_k) + \mathbf{c} from \mathbf{z}_0 = (0,0,0), where f_8(\mathbf{z}) is 12.7887th-power in spherical coordinates: let \varphi = \frac{\sqrt(5)+1)}{2}; convert \mathbf{z} = (x,y,z) to r = \sqrt{x^{\left\{\frac{\pi}{\varphi}\right\}}+y^{\left\{\frac{\pi}{\varphi}\right\}}+z^{\left\{\frac{\pi}{\varphi}\right\}}} ,\theta = \atan2(y,x) \in [0,2\pi), \phi = \arccos(z/r) \in [0,\pi]; then r' = r^12.7887,\theta' = 12.7887\theta,\phi' = 12.7887\phi; reconvert to Cartesian \mathbf{z}' = r' (\sin\(\sin\phi'\)\cdot\cos\(\cos\theta'\), \sin\(\sin\phi'\)\cdot\sin\(\sin\theta'\), \cos\(\cos\phi'\) ). Bailout at r_k > 248.78; render the bounded set's isosurface at density threshold yielding fractal dimension D \approx 2 + \frac{\ln(12.7887)}{\ln(1/0.5)} with infinite genus g \to \infty from iterated hyperbolic saddles with PHIB = (\sqrt{5.0} \cdot 0.5 + 0.5) and Jacobian eigenvalues |\lambda_i| \approx 12.7887 r^11.7887 e^{i11.7887\arg(\mathbf{z})}, saddles where \det Jacobian > pi\cdot\PHIB. Center on \mathbf{c} \approx (0,0,-0.7) for cardioid region, emphasizing bilateral symmetry (z-axis invariance enforcing yz-mirror), genus-7.4554 bulbs at \phi \approx \pi/2 \pm \epsilon from 12.7887-fold rotational folding (even-pair selection), central z-axis protrusion (minimal \phi-folding, radial ballooning r' = r^12.7887), and vertical depressions from polar \phi -compression. Use volumetric ray-marching with distance estimator d(\mathbf{x}) = |\mathbf{x}| - \max_k r_k^{-k}; color palette: iridescent blue background (#0000FF ) grading to translucent pink-magenta gradients (#FF1493 to #8A2BE2 ) on surfaces, with subtle specular highlights on bulb edges and fractal tendrils. Lighting: soft key light from +z, rim light from +x for depth; resolution 4K, aspect 16:9, no artifacts. Apply 16.24788742\nabla\times\mathbf{F} on the exterior contravariant derivative of the tensor product of the tangent bundle of the orbifold over the cotangent bundle of the conifold !
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
47
0
12
Vibrant Spherical Object in Deep Space with Patterns
  • Share
    https://deepdreamgenerator.com/ddream/dzcsqr5c2ye COPY LINK
  • Info

    Cosmic Sphere in a Starry Landscape

    • Model: Photonic

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Generate a high-resolution, purely artistic–mathematical visualization of the following highly exotic, static, spherically symmetric spacetime with deliberate irrational and fractional exponents (intended to probe fractal/fractional-dimensional geometry): $$ ds^{48.123321\pi} = \frac{ [ -dt^{2.8778\pi} + dr^{2.7887\pi} + \sin^{1.445877854\pi} r \, d\Omega^{1.2278\pi} ] }{ [ \cos^{2.144\pi} t + r^{2.7447\pi} \cos^{2.4774\pi} t - r^{2.5665\pi} ] } $$ using the coordinate transformation $$ t = \frac{1}{2.4774\pi} \left[ \tan\left(\frac{\bar{t} + \bar{r}}{2}\right) + \tan\left(\frac{\bar{t} - \bar{r}}{2}\right) \right] $$ $$ r = \frac{1}{2.4774\pi} \left[ \tan\left(\frac{\bar{t} + \bar{r}}{2}\right) - \tan\left(\frac{\bar{t} - \bar{r}}{2}\right) \right] $$ Please render a deep, surreal, fractal-style view of the spacetime (volumetric ray-marched, maximum iteration depth, caustic-heavy, self-similar detail) and overlay hundreds of numerically integrated geodesic paths starting from many different initial conditions and energies: - bright white/yellow null geodesics (light rays, photon orbits, possible unstable circular orbits) - red timelike geodesics (massive particles falling in, bound orbits, scattering hyperbolae) - blue spacelike geodesics where they exist Let the geodesics curve, branch, and fractalize naturally under these insane fractional powers and the position-dependent conformal factor in the denominator. Make the whole scene feel like a burning, recursive, higher-dimensional glass cathedral collapsing into infinite self-similar horizons. Absolutely no text, no axes, no labels — pure image.
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5w
65
0
12
Serene Landscape with Winding River and Cliffs
  • Share
    https://deepdreamgenerator.com/ddream/1c6h1cvlkqf COPY LINK
  • Info

    Tranquil River in Lush Green Landscape

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: While deriving the underivable depict the undepictable describing the undescribable in a glorious manner into an img !
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11w
35
0
12
Spherical Earth Representation with Crystalline Texture
  • Share
    https://deepdreamgenerator.com/ddream/n1q2osnzyb8 COPY LINK
  • Info

    Harmony of Earth and Cosmos in Abstract Art

    • Model: FluX

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: "Let \( \mathcal{O} \) be a smooth Calabi–Yau orbifold and \( \mathcal{C} \) the resolved small conifold (smooth Calabi–Yau 3-fold). Fix compatible Ricci-flat metrics on both. Apply the scalar multiple \( 24.24788742 \, (\nabla \times \mathbf{F}) \), where \( \mathbf{F} \in \Gamma(\mathbb{R}^3) \) is a compactly supported vector field on a local Euclidean chart, to the tensor product \( d_\nabla \, \omega \otimes \mathcal{L}_\xi \, \alpha \), where \( d_\nabla : \Gamma(\Lambda^\bullet T^*\mathcal{O} \otimes T\mathcal{O}) \to \Gamma(\Lambda^{\bullet+1} T^*\mathcal{O} \otimes T\mathcal{O}) \) is the exterior covariant derivative induced by the Levi-Civita connection on the tangent orbibundle of \( \mathcal{O} \), - \( \omega \) is a smooth section of \( \Lambda^1 T^*\mathcal{O} \otimes T\mathcal{O} \), \( \mathcal{L}_\xi \) denotes the Lie derivative along a Killing vector field \( \xi \) on the resolved conifold \( \mathcal{C} \), \( \alpha \in \Omega^2(\mathcal{C}) \) is a Kähler (1,1)-form, evaluated at the unique stratum-preserving orbifold-conifold correspondence point in the moduli space where the stringy Kähler moduli align at the conifold locus under mirror symmetry after analytic continuation through the 24.24788742-th branch of the Picard–Fuchs equations.(We further demand that the entire expression be Wick-rotated, smeared over a Gaussian regulator of width \( e^{-24.24788742} \), and uplifted to eleven dimensions just for the vibes.)"
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3w
80
0
12
Vibrant Fractal Design with Glossy Center Sphere
  • Share
    https://deepdreamgenerator.com/ddream/48512kusejq COPY LINK
  • Info

    Swirling Fractal Patterns in Vibrant Colors

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Generate a highly detailed, abstract 3D fractal rendering resembling a Mandelbulb variant with hyperbolic deformations, featuring a central orange bulbous orb surrounded by swirling, fluid-like lobes in shades of blue, pink, and yellow with iridescent, reflective surfaces and gradient transitions. The fractal is defined iteratively in \(\mathbb{R}^3\) for a point \(\mathbf{c} = (x_0, y_0, z_0)\), starting with \(\mathbf{z}_0 = \mathbf{0}\) or \(\mathbf{z}_0 = \mathbf{c}\), and iterating \(\mathbf{z}_{k+1} = r \cdot \vec3\left( \frac{e^{\cos \theta} - e^{-\cos \theta}}{\pi} \cos \phi, \cos \theta \sin \phi, \cos \theta \right) + \vec3\left( \frac{e^{p_x} - e^{-p_x}}{\pi} p_x, \frac{e^{p_y} - e^{-p_y}}{\pi} p_y, \frac{e^{p_z} - e^{-p_z}}{\pi} p_z \right)\), where \(r = \|\mathbf{z}_k\|\), \(\theta = \arccos\left( \frac{z_k \cdot z}{r} \right)\), \(\phi = \atantwo(z_k.y, z_k.x)\), and \(\mathbf{p}\) is a vector parameter like \(\mathbf{c}\). For higher powers n (e.g., 16), scale to \(r^n\), \(n \theta\), \(n \phi\). Iteration halts if \(r > 4\) or after 50 max iterations. Render using ray marching with distance estimator \(DE(\mathbf{q}) = 0.75 \cdot \frac{\log r \cdot r}{dr}\), surface normals via gradients, Phong/PBR shading with reflections, ambient occlusion, and coloring via orbit traps or escape time mapped to hues (orange for low iterations, blue-pink gradients for higher). Apply post-processing for anti-aliasing, depth-of-field, and glow to achieve a dreamy, metallic sheen, viewed zoomed into the central orb with asymmetric swirling arms.
      • Using base image: No
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

12w
34
0
12
Vibrant Fractal Pattern with Octopus-like Central Shape
  • Share
    https://deepdreamgenerator.com/ddream/qkjlvuwr6ci COPY LINK
  • Info

    Vibrant Fractal Design in Blue and Orange

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A highly detailed digital rendering of an abstract, symmetrical fractal structure resembling a surreal, organic face floating against a gradient blue sky background, generated using a modified Mandelbulb fractal algorithm viewed from the inside with ray marching. Incorporate precise mathematical details: Define constants pi = 3.1415926535897932384626433832795, tau = 2*pi, TAU = (2*pi)*0.7887, PHI = (sqrt(5)*0.5 + 0.5) ≈1.618 golden ratio, POWER = 11.24788742 for exponentiation, LOOPS = 3 iterations, TOLERANCE = 0.00001, MAX_RAY_LENGTH = 20.0, MAX_RAY_MARCHES = 48, NORM_OFF = 0.0005, MAX_BOUNCES = 5. Custom hyperbolic functions: chp(x) = (exp(x) + exp(-x))/pi, chpp(x) = (exp(x/(cosh(x)*pi)) + exp(-x/(cosh(x)/pi)))/(TAU*PHI), shp(x) = (exp(x) - exp(-x))/(pi/PHI), shpp(x) = (exp(x*(sinh(x)*pi)) - exp(-x*(sinh(x)*pi)))/(TAU/PHI), ssh(x) = (exp(x*pi/0.7887) - exp(-x*pi/0.7887))/(2*pi), csh(x) = (exp(x*pi/0.7887) + exp(-x*pi/0.7887))/(2*pi), ssh1(x) = sinh(x/pi)*PHI, csh1(x) = cosh(x/pi)*PHI. The Mandelbulb distance estimator mandelBulb(p): Initialize z = chp(p)*p - p, dr=1.0; for i=0 to LOOPS-1, r=length(z), theta=atan(z.x,z.y), phi=asin(z.z/r) + optional time*0.2 for animation; dr = r^(POWER-1) * dr * POWER + 1; r = r^POWER, theta *= POWER/PHI, phi *= POWER/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))*PHI, chp(cos(theta)*sin(phi)), cos(phi)) + p; p = reflect(p,z). Return distance 0.75 * log(r) * r / dr. Overall distance function df(p) = shp(mandelBulb(p/2.0)*2.0) after applying rotation matrix g_rot = rot_x(((1.221*time + pi)/tau)). Render with ray marching from camera at 0.6*vec3(0,2,5) looking at origin, FOV tan(TAU/6), incorporating bounces for reflection (reflect(rd,sn)), refraction (refract(rd,sn,1.0/mat.z or inverse)), fresnel fre=1+dot(rd,sn) squared and mixed 0.1-1.0, diffuse dif=max(dot(ld,sn),0)^2 * (1-mat.x) with ld to light at (0,10,0), material mat=(0.8,0.5,1.05), beer absorption exp(-(st+0.1)* -HSV(0.05,0.95,2.0)). Sky background: Procedural with planes at y=4 and y=-6, box bounds, exponential falloff, colored HSV(0.6,0.86,1.0). Colors: Glow HSV(0.065,0.8,6.0), diffuse HSV(0.6,0.85,1.0), post-processed with ACES tonemapping aces_approx(v) = clamp((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1) after *0.6, and sRGB gamma mix(1.055*t^(1/2.4)-0.055,12.92*t,step(t,0.0031308)). The structure features two large spiral-eyed voids as eyes, a curved dark blue mouth-like opening at the bottom, elaborate branching tendrils and crystalline edges with subtle particle specks dissipating at sides, ethereal pinkish-orange glow, edge fresnel effects, hyper-realistic yet fantastical Shadertoy-inspired 3D art in 16:9 aspect ratio with sharp details and no text or artifacts.
      • Using base image: No
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

20d
63
0
11
  • ‹
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • ›

Boris Krumov

Member since 2025

Artist statement


© 2025 Deep Dream Generator. All rights reserved.
Terms & Privacy   |   Cookie Settings   |   Tags   |   Updates   |   Support

Contact Us

Email us at   contact@deepdreamgenerator.com

Deep Dream Level

Dream Level: is increased each time when you "Go Deeper" into the dream. Each new level is harder to achieve and takes more iterations than the one before.

Rare Deep Dream: is any dream which went deeper than level 6.

Deep Dream

You cannot go deeper into someone else's dream. You must create your own.

Deep Dream

Currently going deeper is available only for Deep Dreams.