Comments
Loading Dream Comments...
You must be logged in to write a comment - Log In
Artist___________ Image of neutron star and white dwarf as giant quantum systems with fractional hydrogen atoms, extreme magnetic fields, high conductivity, cosmic background, rendered with all math details from conversation in utmost detail as of 09:54 AM EEST, Thursday, August 14, 2025: - USE **Shader Macros**: - \(\pi = 3.1415926535897932384626433832795\), \(\tau = 2\pi\). - \(\mathrm{chp}(x) = (e^x + e^{-x})/\pi\), \(\mathrm{chpp}(x) = (e^{x/(\cosh(x)\pi)} + e^{-x/(\cosh(x)/\pi)})/\tau \cdot \Phi\). - \(\mathrm{shp}(x) = (e^x - e^{-x})/\pi\), \(\mathrm{shpp}(x) = (e^{x (\sinh(x)\pi)} - e^{-x (\sinh(x)\pi)})/\tau \cdot \Phi\). - \(\mathrm{ssh}(x) = (e^{x \pi /0.7887} - e^{-x \pi /0.7887})/(2\pi)\), \(\mathrm{csh}(x) = (e^{x \pi /0.7887} + e^{-x \pi /0.7887})/(2\pi)\). - \(\mathrm{ssh1}(x) = \sinh(x/\pi)/\Phi\), \(\mathrm{csh1}(x) = \cosh(x/\pi)/\Phi\). - LOOPS=3, POWER=11.24788742, TAU=(2\pi)*0.7887, PHI=(√5/2 + 1/2)≈1.618, TIME=iTime. - **Modified Schwarzschild Metric**: - Base: \( ds^2 = -(1 - r_s/r) c^2 dt^2 + (1 - r_s/r)^{-1} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \), \( r_s = 2GM/c^2 \). - Transformed: \( ds^2 = -(1 - r_s/\sinh(r')) c^2 (dt'/(1 + t/t_0))^2 + (1 - r_s/\sinh(r'))^{-1} (\cosh(r') dr')^2 + (\sinh(r'))^2 d\theta'^2 + (\sinh(r'))^2 \sin^2(\atan(\theta')) d\phi^2 \), where r'=\asinh(r), t'=\ln(1 + t/t_0), \theta'=\atan(\theta), t_0=r_s/c. - Variant: \[ ds^2 = - \left(1 - \frac{2GM}{\sinh(x)}\right) c^2 \frac{dT^2}{T^2} + \left(1 - \frac{2GM}{\sinh(x)}\right)^{-1} \cosh^2(x) \, dx^2 + \sinh^2(x) \left( \frac{du^2}{(1 + u^2)^2} + \frac{u^2}{1 + u^2} d\phi^2 \right) \] - **Reworked Equations**: - Radius: \( r_q^{IV} = [\sinh(\asinh(\alpha^2 \hbar^2 / m_e k e^2) \cdot (1 - r_s/r)^{-1/2}) \cdot \chp(\asinh(\alpha^2 \hbar^2 / m_e k e^2)/\Phi)]^{\mathrm{POWER}} + | \int d^3 p / (2\pi)^3 \cdot 1/\sqrt{2 E_p} e^{-i p \cdot r_q'''} |^2 \), E_p = \sqrt{p^2 c^2 + m^2 c^4}. - Energy: \( E_q'' = - m_e c^2 / 2 \cdot 1/(1 + t/t_0) \cdot \chp(\ln(1 + t/t_0)/\tau) \). - Magnetic Field: \( B^{IV} = (\mu_0 e c / (4 \pi (r_q^{IV})^2) \cdot \theta / \sqrt{1 + \theta^2}) \cdot \shp((\mu_0 e c / (4 \pi (r_q^{IV})^2)) / \mu_0) \). - **QFT Influence**: \(\hat{\psi}(x) = \int d^3 p / (2\pi)^3 \cdot 1/\sqrt{2 E_p} [a_p e^{-i p \cdot x} + b_p^\dagger e^{i p \cdot x}]\), adding particle excitations; vacuum: <0| \hat{\psi}^\dagger(x) \hat{\psi}(y) |0> = \int d^3 p / (2\pi)^3 \cdot 1/(2 E_p) e^{-i p \cdot (x - y)}. Set against fractal cosmic backdrop with deepest recursion, maximum iteration (LOOPS≥3, extended), thorough detailing, crystal-clear focus, pixel-perfect rendition, highlighting gravitational warping, quantum states, hyperbolic patterns, neutron star 10 km radius, B≈6×10^{11} T, white dwarf stability, dynamic evolution.'
A vibrant cosmic scene depicts a swirling, blue vortex in space, with a glowing sun radiating light nearby. Stars twinkle in the dark background, enhancing the ethereal atmosphere.