Deep Dream Generator DDG
  • AI Upscaler
  • AI Video
  • AI Music
  • About
  • Blog
  • Login Sign Up

Boris Krumov

Dreamer

875 4

  • Dreams 85
  • Following 14
  • Followers 5
  • Liked 328
  • Latest
  • Best
  • About
Intricate Black and White Fractal Design with Spirals
  • Share
    https://deepdreamgenerator.com/ddream/d71ci1qna7j COPY LINK
  • Info

    Mesmerizing Black-and-White Fractal Design

    • Model: DaVinci2

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Render: a Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(-0.25,12.21,db)+4.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.751v+1.3))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.1255\text{pow}(t,1/12.4)-0.755,12.92t,\text{step}(t,0.31308)) \), no text/artifacts, with the use of: \[ ds^2 = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^2 \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^2 dt'^2 + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1} \left(\frac{dr'}{d\text{asinh}(r')}\right)^2 dr'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 d\theta'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 \sin^2(\text{atan}(\theta')) d\phi^2 \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \).
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4h
64
0
18
Surreal Abstract Design with Colorful Flowing Patterns
  • Share
    https://deepdreamgenerator.com/ddream/7deefkryb4n COPY LINK
  • Info

    Enigmatic Abstract Swirls and Shadows

    • Model: Ideogram

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: With the use of: \[ ds^2 = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^2 \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^2 dt'^2 + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1} \left(\frac{dr'}{d\text{asinh}(r')}\right)^2 dr'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 d\theta'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 \sin^2(\text{atan}(\theta')) d\phi^2 \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(-0.25,12.21,db)+4.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.751v+1.3))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.1255\text{pow}(t,1/12.4)-0.755,12.92t,\text{step}(t,0.31308)) \), no text/artifacts.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
      • Ideogram Style: Auto
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5h
42
0
11
Dragons and Underwater Ruins in Vibrant Landscapes
  • Share
    https://deepdreamgenerator.com/ddream/phoalwba2ew COPY LINK
  • Info

    Dragons Clash by Waterfalls and Ruins

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: The Ancient Wisdom of the Dragons was what brought Atlantis into knowledgeable blooming prosperity. The homosapientic stupidity, greed and decadence was what brought it all down...
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

10h
44
0
10
Radiant Stylized Face with Blue Skin and Cosmic Patterns
  • Share
    https://deepdreamgenerator.com/ddream/98a0ed4kn28 COPY LINK
  • Info

    Mystical Abstract Face in Vibrant Hues

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Generate a highly detailed digital artwork of an abstract, symmetrical fractal "mask" or ethereal face emerging from swirling pink-orange tendrils and blue voids, evoking a cosmic explosion: central bulbous form with circular "eyes" (disc-warped via V6: \( \theta/\pi (\sin(\pi r), \cos(\pi r)) \) and dripping curls (swirl V3: \( (x \sin(r^{2\pi})-y \cos(r^{2\pi}), x \cos(r^{2\pi})+y \sin(r^{2\pi})) \), rendered as refractive/absorptive solid via ray-marched signed distance field from modified Mandelbulb II fractal—power \( n=11.24788742 \), LOOPS=64 iterations, initial \( z=chp(p)*p - p \) where \( chp(x)=(e^{2x\pi} + e^{-2x\pi})/\pi \), \( shp(x)=(e^{2x\pi} - e^{-2x\pi})/\pi \), \( chpp(x)=[e^{x/(cosh(x)\pi)} + e^{-x \pi / cosh(x)}]/(2\pi) \) \( \Phi \) with \( \Phi=(1+\sqrt{5})/2 \) golden ratio, \( shpp(x)=\sinh(\pi x \sinh(x))/\pi * \Phi \), \( ssh(x)=\sinh(x \pi /0.7887)/\pi \approx\sinh(4x)/\pi \), \( csh(x)=\cosh(4x)/\pi \), \( ssh1(x)=\sinh(x/\pi)/\Phi \), \( csh1(x)=\cosh(x/\pi)/\Phi \); iteration: \( r=||z|| \), if \( r>248 \) break; \( \phi=atan(z_x,z_y) \) (swapped phase), \( \theta=asin(z_z/r) + 0.2 t \) (\( t \) fixed for static); \( dr = r^{n-1} dr n +1 \) (start \( dr=1 \)); \( r\leftarrow r^n \); \( \theta\leftarrow\theta n /\Phi \approx\theta*6.95 \); \( \phi\leftarrow\phi n /\Phi \); \( z\leftarrow r * (shpp(\sin\theta \sin\phi) \Phi, chp(\cos\theta \sin\phi), \cos\phi) + p \); \( p\leftarrow reflect(p,z)=p-2(p\cdot z)/(z\cdot z) z \) (bilateral fold); \( DE=0.75 \log(r) r / dr \); \( df(p)=shp(DE *2) \) post-scale \( z1=2 \) and \( rot\_x((1.221 t +\pi)/\tau) \) with \( \tau=2\pi*0.7887\approx4.95 \); normal via finite diff \( \varepsilon=5e-4 \); ray march \( t=0 \), tol=\( 1e-5 \), max \( t=20 \), steps=48, dfactor=\( \pm1 \) (inside/out); multi-bounce=5: hit \( sp=ro+t rd \) (\( ro=0.6(0,2,5) \)), \( sn=dfactor normal(sp) \), \( fre=(1+rd\cdot sn)^2 \) mix(0.1,1), \( ld=normalize((0,10,0)-sp) \), \( dif=(ld\cdot sn max0)^2 \); \( ref=reflect(rd,sn) \), \( refr=refract(rd,sn, inside?1/1.05:1.05) \) (\( \eta=1.05 \)), if TIR \( rd=chpp(ref) \) else \( rd=refr \) toggle inside \( ragg*=chpp(0.8) \); inside \( ragg*=exp(-(t+0.1) beer) \) beer=-HSV(0.05,0.95,2) red absorption; \( col=HSV(0.6,0.85,1) dif (1-0.8) + sky(ref sp) *0.5 fre smooth(1,0.9,fre) \); \( agg+=ragg col \), \( ro=shpp(sp+0.1 rd) \); sky: warp \( ro=reflect(-ssh1(rd),chpp(ro)) \cdot rd * ro \) outer, base=clamp(\( 0.25/|ro\_z| \) HSV(0.6,0.86,1),0,1); planes \( t=chpp( (n\cdot ro+d)/(n\cdot rd) ) \) floor \( n=(0,-1,0) \) \( d=6 \) ceil (0,1,0) \( d=-4 \), floor box glow 4 sky \( rd\_y^2 \) smooth(0.25,0,box(xz,(6,9))-1) +0.8 sky exp(-0.5 max(db,0)), ceil circle 0.25 sky exp(-0.5 (\(||xz||-0.5\)); sky=shp(clamp(col,0,10)); FOV=tan(\( \tau/6 \)\approx47° orthog cam; post: aces\_approx(v*0.6 (2.51v+0.03)/(2.43v+0.59 v +0.14)) then sRGB mix(1.055 v^{1/2.4}-0.055,12.92v, v<0.00313); vibrant HSV palette hoff=0, glow HSV(0.065,0.8,6), diffuse HSV(0.6,0.85,1), blue bg gradients, speckled textures from low-iter approx, anti-aliased via FXAA-inspired, ethereal volumetric glow, high-res 4K surreal sci-fi art in style of fractal flames meets raytracing. Apply cross product of the tangent bundle fibration of the conifold over the cotangent bundle fibration of the orbifold !
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

1d
36
0
8
Surreal Face with Intricate Swirling Patterns in Color
  • Share
    https://deepdreamgenerator.com/ddream/cekdr9usvb7 COPY LINK
  • Info

    Surreal Face in Vibrant Patterns

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Generate a highly detailed digital artwork of an abstract, symmetrical fractal "mask" or ethereal face emerging from swirling pink-orange tendrils and blue voids, evoking a cosmic explosion: central bulbous form with circular "eyes" (disc-warped via V6: \( \theta/\pi (\sin(\pi r), \cos(\pi r)) \) and dripping curls (swirl V3: \( (x \sin(r^2)-y \cos(r^2), x \cos(r^2)+y \sin(r^2)) \), rendered as refractive/absorptive solid via ray-marched signed distance field from modified Mandelbulb II fractal—power \( n=11.24788742 \), LOOPS=3 iterations, initial \( z=chp(p)*p - p \) where \( chp(x)=(e^x + e^{-x})/\pi \), \( shp(x)=(e^x - e^{-x})/\pi \), \( chpp(x)=[e^{x/(cosh(x)\pi)} + e^{-x \pi / cosh(x)}]/(2\pi) \) \( \Phi \) with \( \Phi=(1+\sqrt{5})/2 \) golden ratio, \( shpp(x)=\sinh(\pi x \sinh(x))/\pi * \Phi \), \( ssh(x)=\sinh(x \pi /0.7887)/\pi \approx\sinh(4x)/\pi \), \( csh(x)=\cosh(4x)/\pi \), \( ssh1(x)=\sinh(x/\pi)/\Phi \), \( csh1(x)=\cosh(x/\pi)/\Phi \); iteration: \( r=||z|| \), if \( r>248 \) break; \( \phi=atan(z_x,z_y) \) (swapped phase), \( \theta=asin(z_z/r) + 0.2 t \) (\( t \) fixed for static); \( dr = r^{n-1} dr n +1 \) (start \( dr=1 \)); \( r\leftarrow r^n \); \( \theta\leftarrow\theta n /\Phi \approx\theta*6.95 \); \( \phi\leftarrow\phi n /\Phi \); \( z\leftarrow r * (shpp(\sin\theta \sin\phi) \Phi, chp(\cos\theta \sin\phi), \cos\phi) + p \); \( p\leftarrow reflect(p,z)=p-2(p\cdot z)/(z\cdot z) z \) (bilateral fold); \( DE=0.75 \log(r) r / dr \); \( df(p)=shp(DE *2) \) post-scale \( z1=2 \) and \( rot\_x((1.221 t +\pi)/\tau) \) with \( \tau=2\pi*0.7887\approx4.95 \); normal via finite diff \( \varepsilon=5e-4 \); ray march \( t=0 \), tol=\( 1e-5 \), max \( t=20 \), steps=48, dfactor=\( \pm1 \) (inside/out); multi-bounce=5: hit \( sp=ro+t rd \) (\( ro=0.6(0,2,5) \)), \( sn=dfactor normal(sp) \), \( fre=(1+rd\cdot sn)^2 \) mix(0.1,1), \( ld=normalize((0,10,0)-sp) \), \( dif=(ld\cdot sn max0)^2 \); \( ref=reflect(rd,sn) \), \( refr=refract(rd,sn, inside?1/1.05:1.05) \) (\( \eta=1.05 \)), if TIR \( rd=chpp(ref) \) else \( rd=refr \) toggle inside \( ragg*=chpp(0.8) \); inside \( ragg*=exp(-(t+0.1) beer) \) beer=-HSV(0.05,0.95,2) red absorption; \( col=HSV(0.6,0.85,1) dif (1-0.8) + sky(ref sp) *0.5 fre smooth(1,0.9,fre) \); \( agg+=ragg col \), \( ro=shpp(sp+0.1 rd) \); sky: warp \( ro=reflect(-ssh1(rd),chpp(ro)) \cdot rd * ro \) outer, base=clamp(\( 0.25/|ro\_z| \) HSV(0.6,0.86,1),0,1); planes \( t=chpp( (n\cdot ro+d)/(n\cdot rd) ) \) floor \( n=(0,-1,0) \) \( d=6 \) ceil (0,1,0) \( d=-4 \), floor box glow 4 sky \( rd\_y^2 \) smooth(0.25,0,box(xz,(6,9))-1) +0.8 sky exp(-0.5 max(db,0)), ceil circle 0.25 sky exp(-0.5 (\(||xz||-0.5\)); sky=shp(clamp(col,0,10)); FOV=tan(\( \tau/6 \)\approx47° orthog cam; post: aces\_approx(v*0.6 (2.51v+0.03)/(2.43v+0.59 v +0.14)) then sRGB mix(1.055 v^{1/2.4}-0.055,12.92v, v<0.00313); vibrant HSV palette hoff=0, glow HSV(0.065,0.8,6), diffuse HSV(0.6,0.85,1), blue bg gradients, speckled textures from low-iter approx, anti-aliased via FXAA-inspired, ethereal volumetric glow, high-res 4K surreal sci-fi art in style of fractal flames meets raytracing.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

1d
76
0
20
Sleek Toroidal Shape with Textured Matte Black and Purple
  • Share
    https://deepdreamgenerator.com/ddream/608s3hwcm53 COPY LINK
  • Info

    Sleek Black and Purple Textured Torus Design

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Apply: TE \otimes_{TB} TF \xrightarrow{h_E \otimes h_F} TE \otimes_{TB} TF \xrightarrow{\ \ \ \ \tau\ \ \ \ } T(E \otimes F). vec3 col = fract(clamp(vec3(0.125/abs(reflect(cross(rd,ro),reflect(shpp(ro),chpp(rd))).z))*skyCol, -120.0, 16.54788745));
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

2d
34
0
6
3D Abstract Sculpture of Intertwined Metallic Ribbons
  • Share
    https://deepdreamgenerator.com/ddream/4eux43wzhkc COPY LINK
  • Info

    Mesmerizing 3D Geometric Design Display

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: The supersymmetric action in 4D supergravity as a seamless, abstract geometric manifold in curved spacetime, rendered at 8K resolution with iridescent metallic gradients transitioning from deep sapphire blues and silvers for bosonic fields to vibrant emerald greens and golds for fermionic interactions, evoking quantum foam and holographic duality. Core instructions: Depict graphically, using no text, the full action \( S[e,\psi] = S[e] + S_f[e,\psi] + S_I[e,\psi] \), where the exact, completely detailedly concised maths is: \[ S[e,\psi] = S[e] + S_f[e,\psi] + S_I[e,\psi] = \int dx\, e\, e^a \wedge e^b \wedge F^{cd} \epsilon_{abcd} + \frac{1}{6} \int dx \, \theta^a \wedge e^b \wedge e^c \wedge e^d \epsilon_{abcd} + \int dx\, (\bar{\psi} \gamma_5 \gamma_a \psi)\, (\bar{\psi} \gamma_5 \gamma^a \psi) \, , \] with \(\theta^a \equiv \frac{i}{2} \left( \bar{\psi} \gamma^a D_\mu \psi - \overline{D_\mu \psi} \gamma^a \psi \right) dx^\mu \), all indices a,b,c,d=0,1,2,3 in the orthonormal frame bundle, e^a as coframe 1-forms (vielbeins), F^{cd} = dA^{cd} + A^{c e} \wedge A^{e d} the curvature 2-form of the spin connection, D_μ the covariant derivative along coordinate 1-forms dx^μ, ψ a Majorana spinor field, γ^a Dirac matrices in curved space, ε_{abcd} the Levi-Civita symbol with ε_{0123}=+1, and integrals over the 4-manifold with oriented volume form e = e^0 ∧ e^1 ∧ e^2 ∧ e^3. Visualize the first term S[e] as a swirling vortex of interlocking tetrahedral frames (symbolizing ε_{abcd} contraction) threaded by golden flux tubes (F^{cd} curvature) piercing a lattice of silver vierbein arrows (e^a, e^b) emanating from a central black hole singularity, representing the Einstein-Cartan Chern-Simons topological term. Overlay the fermionic torsion term S_f[e,ψ] as twisting helical ribbons (θ^a 1-forms derived from ψ bilinears) coiling around the vierbeins e^b,c,d into a knotted 4-simplex lattice with emerald sparks at intersection nodes, illustrating the 1/6 prefactor via sixfold symmetric bulbous expansions. Integrate the interaction S_I[e,ψ] as pulsating wave interference patterns of dual green scalar densities (ψ-bar γ5 γ_a ψ and conjugate), forming self-dual chiral currents that ripple across the manifold, modulating the geometry with fractal-like spinor foam bubbles where |ψ|^2 > threshold, colored by pseudoscalar density via smooth escape-time analogy (iterate bilinear up to 500 steps, hue H = 120° * iter / max, S=0.8, V=1). Ensure the entire composition flows as a unified holographic projection on a de Sitter boundary, with anti-aliased edges via Gaussian smoothing, subtle gravitational lensing distortions, and a faint cosmic microwave glow fading to void black; no equations, labels, or text visible; ultra-sharp filaments on torsion helices and current waves; aspect ratio 16:9; in the style of mathematical physics visualization.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

2d
33
0
6
Surreal Head with Cosmic Elements and Vivid Colors
  • Share
    https://deepdreamgenerator.com/ddream/3eiymmloinc COPY LINK
  • Info

    Mystical Figure in Cosmic Harmony

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: He has fuse with the universe and become one intelligence, being with infinity. He dare consume the fruits of the knowledge of good and evil and gain the forbidden God consciousness. now he is equal with the gods.... and gods do not kill gods but you are not the same, billions of you are expandable...as you are replicas producing replicas...machines to build, sustain the archonic civilization and continue the cultural memory...
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

2d
49
0
7
Glossy Black Spherical Object with Lattice Design
  • Share
    https://deepdreamgenerator.com/ddream/q6qvewd8aul COPY LINK
  • Info

    Elegant Hollow Sphere with Geometric Design

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Cinematic film still, shot on v-raptor XL, film grain, vignette, color graded, post-processed, cinematic lighting, 35mm film, live-action, best quality, atmospheric, a masterpiece, epic, stunning, dramatic
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4d
77
0
18
Surreal Landscape with Pulsating Luminous Core
  • Share
    https://deepdreamgenerator.com/ddream/orslqi6df93 COPY LINK
  • Info

    Surreal Sphere in a Colorful Dreamscape

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Cinematic film still, shot on v-raptor XL, film grain, vignette, color graded, post-processed, cinematic lighting, 35mm film, live-action, best quality, atmospheric, a masterpiece, epic, stunning, dramatic
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4d
30
0
8
Vibrant 3D Structure with Intricate Patterns and Gradients
  • Share
    https://deepdreamgenerator.com/ddream/pca16ofpz06 COPY LINK
  • Info

    Vibrant 3D Render of Abstract Geometry

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A highly detailed 3D render of an object with power P=11.24788742, fixed iterations LOOPS=64, initialized as z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/π, shp(x)=(exp(x)-exp(-x))/π, chpp(x)=(exp(x/(cosh(x)π))+exp(-x/(cosh(x)/π)))/(2π Φ), shpp(x)=(exp(x sinh(x) π)-exp(-x sinh(x) π))/(2π Φ), ssh1(x)=sinh(x/π)/Φ, csh1(x)=cosh(x/π)/Φ, Φ=(1+√5)/2 golden ratio, τ=2π*0.7887; iteration: r=||z||, if r>2 continue, θ=asin(z_z/r)+0.2t animated, φ=atan(z_x,z_y), dr = r^{P-1} dr P +1, r=r^P, θ=θ P/Φ, φ=φ P/Φ, z += r * (tan(shp(sinθ sinφ)) Φ, chp(cosθ sinφ), cosφ) + p, p=reflect(p,z), final DE=0.75 log(r) r / dr scaled by shp(DE *2); ray-marched with max marches=96, tol=10^{-5}, bounces=8, refraction index 1.05, Beer absorption exp(-(t+0.1) * -HSV(0.05,0.95,2)), diffuse HSV(0.6,0.85,1), glow HSV(0.065,0.8,6), sky HSV(0.6,0.86,1) with warped reflections via ssh1, chpp, fract(clamp(0.125 / |reflected cross| * skyCol, -120,16.547)); rotated by rot_x((1.221 t + π)/τ), camera at (0,2,5)*0.6, FOV tan(τ/6), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4d
32
0
9
Intricate Spaceship Design Against Cosmic Backdrop
  • Share
    https://deepdreamgenerator.com/ddream/26d6hj0qiu0 COPY LINK
  • Info

    Mathematical Spaceship with Fractal Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: **"Spaceship based on upon the following maths..."**: This immediately tells me you want a complex, possibly fractal-like, and intricately structured object. The "based upon maths" implies a non-organic, possibly generated or calculated appearance. **Constants (\(\pi\), \(\text{tau}\), \(\text{PHI}\), \(\text{POWER}\), \(\text{LOOPS}\))**: These suggest a generative process, iterative refinement, and perhaps a sense of precision and complexity. The presence of PHI (the golden ratio) often hints at aesthetically pleasing, naturally occurring or fractal patterns. **Custom hyperbolic functions (\(\text{chp}(x)\), \(\text{shp}(x)\), etc.)**: These are strong indicators of non-Euclidean geometry, curvature, twisting, and potentially organic yet structured forms. Hyperbolic functions often produce flowing, complex, and sometimes branching shapes. The specific forms like `chpp` and `shpp` with their nested hyperbolic functions and divisions by constants like `TAU/PHI` further emphasize extreme complexity and unique, perhaps alien, geometric properties. **Mandelbulb formula (\(z=\text{chp}(p)p - p\), \(\text{dr}=1.0\); loop: \(r=\text{length}(z)\)...)**: This is the most crucial part. The Mandelbulb is a well-known 3D fractal. This directly tells me the desired image should exhibit: **Fractal characteristics**: Self-similarity at different scales, infinite detail, recursive patterns. **3D complexity**: The "bulb" implies a volumetric shape, not just a 2D pattern. **Iterative generation**: The "loop" and power functions `pow(r,POWER)` describe how the fractal grows and forms its intricate surface. **Specific transformations**: `\(\theta=\text{POWER}/\text{PHI}\)`, `\(z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p\)` indicate sophisticated rotations, trigonometric operations, and mapping of coordinates, which would result in highly sculptural and intertwined forms. **Distance estimation**: `\(\text{distance}=0.75\log(r)r/\text{dr}\)` is a technique used in raymarching fractals to render surfaces, implying smooth yet incredibly detailed structures. **Material properties (\(\text{mat}=\text{vec3}(0.8,0.5,1.05)\), \(\text{fresnel}\), \(\text{diffuse}\), \(\text{reflection}\))**: These terms describe how light interacts with the spaceship's surface. **Specific `vec3` for `mat`**: Suggests a base color or material property. **Fresnel**: Implies a metallic or reflective surface where reflectivity changes with the viewing angle. **Diffuse**: Indicates some scattering of light. **Reflection**: Explicitly states a desire for reflections, making the surface appear glossy or metallic. **Colors (\(\text{skyCol}=\text{HSV}(0.6,0.86,1)\), \(\text{glowCol}=\text{HSV}(0.065,0.8,6)\), etc.)**: These provide a very clear color palette. **SkyCol (blue/purple)**: Suggests a cosmic or abstract background. **GlowCol (orange/yellow)**: Indicates emissive elements, perhaps engines or internal lighting. **DiffuseCol (similar to skyCol)**: Reinforces the main color theme. **Beer/Absorption**: Implies volumetric light absorption or scattering, possibly through nebulae or translucent parts of the spaceship, adding depth and atmospheric effects. **Sky / Environment (\(y=4/-6\), box/pp patterns, `col+=4skyColrd.y^2...` )**: Describes the background and lighting.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5d
31
0
9
Futuristic Saucer-Shaped Spacecraft in Deep Space
  • Share
    https://deepdreamgenerator.com/ddream/p4t7t2df5k8 COPY LINK
  • Info

    Mathematical Spaceship Visualization Techniques

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A spaceship based on upon the following maths: Rendered with full rotation by an exact angle of \( \pi/64.2458778542 \) on the z-axis with all rotated frames rendered in statically overlapping on fullscreen! Using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,\text{step}(t,0.0031308)) \), no text/artifacts.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
0
0
3
Surreal Landscape with Ornate Shell-Like Formations
  • Share
    https://deepdreamgenerator.com/ddream/0sjwr15yurr COPY LINK
  • Info

    Eternal Spin of a Fractal Dreamscape

    • Model: DaVinci2

    • Size: 1920 X 1080 (2.07 MP)

    • Used settings:

      • Prompt: A mesmerizing single static image emerges from the ray-marched Mandelbulb scene with seamless full-360° z-axis rotation capture. Each frame increments by exactly π/64.45788754 radians and the fixed camera at 0.6·vec3(0, -12.75, 5.87), preserving the tan(TAU/6) FOV where TAU ≈ 4.957 (2π·0.7887). All rotational scenes are baked-in statically rendered on top of each other in fullscreen ! The fractal's intricate, hyperbolic-warped tendrils—distorted via custom chp/shp/ssh functions, PHI-scaled powers (11.24788742^LOOPS=256 iterations), and time-frozen φ offset (0.2·asin(z.z/r))—unfurl in violet-magenta glows (mat=vec3(0.8,0.5,1.05)), kissed by HSV(0.6,0.85,1) diffuse from the ld=(0,10,0) key light. Fresnel edges (smoothstep(1,0.9,(1+dot(rd,sn))^2)) blend 0.1-1.0 mixes of reflection (r·skymat.y·fre·edge) against skyCol=HSV(0.6,0.86,1) planes at y=±4/6, etched with box/pp noise (ds=length(pp)-0.5, shaped by shp(clamp(col,0,10))) and exp(-0.5·max(db,0)) falloff + 4·skyCol·rd.y²·smoothstep(0.25,0,db). Subtle beer absorption (exp(-(st+0.1)·-HSV(0.05,0.95,2.0))) adds volumetric haze, aggregated via ssh1(r·agg·skyColor) in 64-bounce refractions (reflect(-ssh1(rd), chpp(ro)); rd=chpp(ref) or ro=shpp(sp+0.1·rd)).Post-processed through ACES tonemapping (v=0.6; clamp((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) and sRGB gamma (mix(1.055·pow(t,1/2.4)-0.055, 12.92t, step(t,0.0031308))), the grid pulses with glowCol=HSV(0.065,0.8,6) auras against the rotated g_rot=rot_x(((1.221·time+π)/tau)) baseline, df(p)=shp(mandelBulb(p/2.0)*2.0). No artifacts, no text—pure, tolerance-0.00001 precision (max 784.0 length, 487 marches) frozen in eternal spin, seed 1924139471 anchoring the chaos.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape_wide
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
0
0
3
Abstract Fractal Design with 3D Spiral Patterns
  • Share
    https://deepdreamgenerator.com/ddream/eevn44qiu24 COPY LINK
  • Info

    Infinite Crystalline Spire of Chaos and Growth

    • Model: AIVision

    • Size: 2688 X 1512 (4.06 MP)

    • Used settings:

      • Prompt: Draw: A highly detailed, surreal 3D rendering of a towering, infinitely recursive crystalline spire emerging from a chaotic sea of bifurcating layers, symbolizing the logistic recurrence's bounded growth exploding into period-doubling cascades that accumulate at a universal scaling constant around four-point-six-six-nine, with sharp needle-like protrusions representing tangent bifurcations and chaotic tongues where positive divergence rates dominate, textured with self-similar folds of stability islands in negative exponent zones interspersed by superstable curves plunging to negative infinity, the structure alternating between two growth parameters in a repeating symbolic sequence like AB or AAB to force oscillations, colored in a radiant teal-to-violet gradient where bright glowing edges highlight the average logarithmic derivative sums over thousands of iterations after transient warm-up, evoking ergodic mixing and multiplicative sensitivity in a two-dimensional parameter plane sliced into volumetric depth with soft volumetric lighting casting shadows that trace the renormalization fixed points and coexisting attractors, intricate visibly etched and glowing along the surfaces and floating ethereally in the space—such as the core iteration \( x_{n+1} = r x_n (1 - x_n) \) carved into the base, the Lyapunov exponent \( \lambda = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \log |r (1 - 2x_n)| \) spiraling up the spire, fixed point solutions \( x^* = 1 - \frac{1}{r} \) branching off spikes, bifurcation condition \( |f'(x^*)| = 1 \) at edges, period-doubling product \( \prod_{i=1}^k f'(x_i) = -1 \) in layered folds, Feigenbaum constant \( \delta \approx 4.669 \) inscribed on recursive crystals, and forced map \( x_{n+1} = r_n x_n (1 - x_n) \) with \( r_n \) switching via sequence S—high-resolution, intricate details on every fractal iteration, no additional text or symbols, cinematic composition.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape_wide
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
0
0
1
Vibrant Fractal Design with Colorful Geometric Patterns
  • Share
    https://deepdreamgenerator.com/ddream/gxscw4wi448 COPY LINK
  • Info

    Mathematical Marvels in 3D Visualization

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw an object following the exact math: central bulbous core with exact power-16.78544587 triplex iteration z_{k+1} = (r^n * ln(sinh(r + ε sin(ω r))) / ln(sinh(r))) * (sin(nθ + ε sinh(ω θ)) cos(nϕ + ε cosh(ω ϕ)), sin(nθ + ε sinh(ω θ)) sin(nϕ + ε cosh(ω ϕ)), cos(nθ + ε sinh(ω θ))) + c, where n=16.78544587, ε=0.001275, ω=1.618 (golden ratio), r=sqrt(x'^{1.618\pi} + y'^{1.618\pi} + z'^{1.618\pi}), x'=x + ε cos(k x), y'=y + ε sinh(ω y), z'=z + ε cos(k z), k=16.78544587, θ=arccos(z'/r), ϕ=arctan(y'/x'), bailout |z|>48.84, max iter=64; hybrid MB3D slots: 1-Amazing Box (scale=12.21, MinR²=0.01275, FixedR²=16.78544587, arctan-perturbed ϕ), 2-MengerKoch (iter=32, scale=\frac{2}{\pi} = 2/\pi, rotations pi\16.78544587, cosh-elongated θ), 3-ABoxModKali (offset=0.125, mod=(2.45788754*π)/k, sinh-waved z), 4-_reciprocalZ2 (power=2*16.78544587, damp=0.001278, ln(sinh)-damped r); DE raymarch |z| ln|z| / |∂z/∂c| <10^{-64}; Ricci-flat metric ds^{2\pi} = -\ln(\text{sinh}(t + \epsilon \sin(\omega t))) dt^{2\pi} + \tan^{-pi}(x + \epsilon \cos(k x)) dx^{2\pi} + \cosh(y + \epsilon \sinh(\omega y)) dy^{2\pi} + \sinh(z + \epsilon \cos(k z)) dz^{2\pi} embedded axis-separably; escape coloring: firey glowing core (iter48-64), plasma petals (24-32), turquoise orbs/blue bg (12); camera (1.5,0.8,1.25), zoom=4.8, FOV=78° for core close-up, volumetric fog exp(-dist/64), specular light (12.23,7.47,2.78) shininess=64; exact Fibonacci 13/21 spirals from irrational rotations, 4K crisp edges.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
78
0
20
Close-up of a blue sunflower with yellow center details
  • Share
    https://deepdreamgenerator.com/ddream/nfne9cgynh1 COPY LINK
  • Info

    Fractal Sunflower: A 3D Visualization Journey

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: 3D fractal visualization of a hybrid Mandelbulb sunflower: central bulbous core with exact power-16.45877854 triplex iteration z_{k+1} = (r^n * ln(sinh(r + ε sin(ω r))) / ln(sinh(r))) * (sin(nθ + ε sinh(ω θ)) cos(nϕ + ε cosh(ω ϕ)), sin(nθ + ε sinh(ω θ)) sin(nϕ + ε cosh(ω ϕ)), cos(nθ + ε sinh(ω θ))) + c, where n=16.45877854, ε=0.0125, ω=1.618 (golden ratio), r=sqrt(x'^{2\pi} + y'^{2\pi} + z'^{2\pi}), x'=x + ε cos(k x), y'=y + ε sinh(ω y), z'=z + ε cos(k z), k=16.45877854, θ=arccos(z'/r), ϕ=arctan(y'/x'), bailout |z|>4.0, max iter=64; hybrid MB3D slots: 1-Amazing Box (scale=2.0, MinR²=0.25, FixedR²=1.0, arctan-perturbed ϕ), 2-MengerKoch (iter=3, scale=2/3, rotations 0/120/240°, cosh-elongated θ), 3-ABoxModKali (offset=0.5, mod=2π/k, sinh-waved z), 4-_reciprocalZ2 (power=2, damp=0.1, ln(sinh)-damped r); DE raymarch |z| ln|z| / |∂z/∂c| <10^{-6}; Ricci-flat metric ds²=-ln(sinh(t+ε sin(ω t))) dt² + arctan(x+ε cos(k x)) dx² + cosh(y+ε sinh(ω y)) dy² + sinh(z+ε cos(k z)) dz² embedded axis-separably; escape coloring: orange-brown core (iter18-25), yellow-gold petals (10-17), turquoise orbs/blue bg (<10); camera (0.75,0.8,1.25), zoom=4.8, FOV=60° for core close-up, volumetric fog exp(-dist/1.25), specular light (2,3,1) shininess=32; exact Fibonacci 13/21 spirals from irrational rotations, 4K crisp edges. Add metric: ds^{2\pi} = -\ln(\text{sinh}(t + \epsilon \sin(\omega t))) dt^{2\pi} + \tan^{-pi}(x + \epsilon \cos(k x)) dx^{2\pi} + \cosh(y + \epsilon \sinh(\omega y)) dy^{2\pi} + \sinh(z + \epsilon \cos(k z)) dz^{2\pi} .
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

8d
45
0
5
Vibrant sunflower with golden petals and green disk
  • Share
    https://deepdreamgenerator.com/ddream/ohyrvxxpctu COPY LINK
  • Info

    Fractal Sunflower: A 3D Visual Journey

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: 3D fractal visualization of a hybrid Mandelbulb sunflower: central bulbous core with exact power-16.45877854 triplex iteration z_{k+1} = (r^n * ln(sinh(r + ε sin(ω r))) / ln(sinh(r))) * (sin(nθ + ε sinh(ω θ)) cos(nϕ + ε cosh(ω ϕ)), sin(nθ + ε sinh(ω θ)) sin(nϕ + ε cosh(ω ϕ)), cos(nθ + ε sinh(ω θ))) + c, where n=16.45877854, ε=0.0125, ω=1.618 (golden ratio), r=sqrt(x'^{2\pi} + y'^{2\pi} + z'^{2\pi}), x'=x + ε cos(k x), y'=y + ε sinh(ω y), z'=z + ε cos(k z), k=16.45877854, θ=arccos(z'/r), ϕ=arctan(y'/x'), bailout |z|>4.0, max iter=64; hybrid MB3D slots: 1-Amazing Box (scale=2.0, MinR²=0.25, FixedR²=1.0, arctan-perturbed ϕ), 2-MengerKoch (iter=3, scale=2/3, rotations 0/120/240°, cosh-elongated θ), 3-ABoxModKali (offset=0.5, mod=2π/k, sinh-waved z), 4-_reciprocalZ2 (power=2, damp=0.1, ln(sinh)-damped r); DE raymarch |z| ln|z| / |∂z/∂c| <10^{-6}; Ricci-flat metric ds²=-ln(sinh(t+ε sin(ω t))) dt² + arctan(x+ε cos(k x)) dx² + cosh(y+ε sinh(ω y)) dy² + sinh(z+ε cos(k z)) dz² embedded axis-separably; escape coloring: orange-brown core (iter18-25), yellow-gold petals (10-17), turquoise orbs/blue bg (<10); camera (0.75,0.8,1.25), zoom=4.8, FOV=60° for core close-up, volumetric fog exp(-dist/1.25), specular light (2,3,1) shininess=32; exact Fibonacci 13/21 spirals from irrational rotations, 4K crisp edges. Add metric: ds^2 = -\ln(\text{sinh}(t + \epsilon \sin(\omega t))) dt^2 + \tan^{-1}(x + \epsilon \cos(k x)) dx^2 + \cosh(y + \epsilon \sinh(\omega y)) dy^2 + \sinh(z + \epsilon \cos(k z)) dz^2 .
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

8d
45
0
11
Vibrant Cosmic Swirl of Colorful Galaxy Motion
  • Share
    https://deepdreamgenerator.com/ddream/eiju0jwlqd2 COPY LINK
  • Info

    Warped Manifolds in Ethereal Cosmic Dance

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Depict warped manifolds flowing from the \(\pi\)-multiplied metric \( ds^2 = e^{(\psi + \chi)\pi} ds_{(2)}^{2\pi} + R^{2\pi} e^{(-2\psi + \chi)\pi} (\sigma_1^{2\pi} + \sigma_2^{2\pi}) + R^{2\pi} e^{-2\chi \pi} (\sigma_3 + A)^{2\pi} \), where \( ds_{(2)}^2 = g_{ab} dx^a dx^b \) on \((t,r)\) coordinates, \(\psi\), \(\chi\), \(R\), \(A_a\) depend only on radial \(x^a\), and SU(2) left-invariant 1-forms are \( \sigma_1 = -\cosh\(\sin \hat{\psi}\) \, d\theta + \sinh\(\cos \hat{\psi}\) \cosh\(\sin \theta \)\, d\phi \), \( \sigma_2 = \sinh\(\cos \hat{\psi}\) \, d\theta + cosh\(\sin \hat{\psi}\) \cosh\(\sin \theta\) \, d\phi \), \( \sigma_3 = d\hat{\psi} + \sinh\(\cos \theta\) \, d\phi \) (with \( \theta \in [0,\pi] \), \( \phi \in [0,2\pi) \), \( \hat{\psi} \in [0,4\pi) \)). Infuse gauge field \( A^{(5)} = B = B_t \, dt + B_r \, dr \) (stationary in \(r\)) as helical plasma streams, all in a vibrant, ethereal cosmic voids, rotational vortices, event horizon embeddings, and starry symmetry breaking, no text or symbols, pure surreal gravitational dance.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

8d
42
0
7
Surreal Digital Fruit with Flower and Bulb Elements
  • Share
    https://deepdreamgenerator.com/ddream/b3c6vwvoaop COPY LINK
  • Info

    Exploring Dynamic Graphs and Mathematical Concepts

    • Model: DaVinci2

    • Size: 1280 X 720 (0.92 MP)

    • Used settings:

      • Prompt: Rencally no tezing utilixt graphider thengian LagraQFT. Thissentation vicately represual intriry comnamic quaphics theocepts confield with a dybines frabulb Mandelctal, showplay arant vib intercasing ofgance mathening eleand stunmatical grantum.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape_wide
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9d
77
0
20
Intricate 3D Mathematical Structure with Geometric Patterns
  • Share
    https://deepdreamgenerator.com/ddream/g7pfsa6jtku COPY LINK
  • Info

    Calculating Derivatives of Integrals Explained

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: \begin{aligned}{\frac {\mathrm {d} \Phi }{\mathrm {d} \varepsilon }}&amp;={\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}\int _{a}^{b}L(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))\,\mathrm {d} x\\&amp;=\int _{a}^{b}{\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}L(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))\,\mathrm {d} x\\&amp;=\int _{a}^{b}\left[\eta (x){\frac {\partial L}{\partial {f}}}(x,f(x)+\varepsilon \eta (x),f'(x)+\varepsilon \eta '(x))+\eta ...
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9d
52
0
15
Sleek Curved Metallic Object with Blue and Purple Lines
  • Share
    https://deepdreamgenerator.com/ddream/nsy2oqt5fvk COPY LINK
  • Info

    Fractal Dynamics of Quantum Field Theory

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Render using no text utilizing graphically the QFT Lagrangian \( \mathcal{L}(x) = -\bar{\phi} \phi + \lambda (\bar{\phi} \phi)^2 + (i \bar{\psi} \gamma^\mu \psi)^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + e j^\mu A_\mu \), where \( F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \), \( j^\mu = \bar{\psi} \gamma^\mu \psi \); include equations of motion: Scalar: \( \bar{\phi} [1 - 2\lambda (\bar{\phi} \phi)] = 0 \) or \( \square \phi + 2\lambda (\bar{\phi} \phi) \phi = 0 \) (full kinetic); Fermion: \( i \gamma^\mu \psi (i \bar{\psi} \gamma_\mu \psi) + e \gamma^\mu A_\mu \psi = 0 \); Gauge: \( \partial_\mu F^{\mu\nu} = e j^\nu + 2 i (i j^\mu) j^\nu \). At the center, feature a prominent fractal Mandelbulb icon rendered with full rotation by an exact angle of \( \pi/64.2458778542 \) on the z-axis with all rotated frames rendered in statically overlapping on fullscreen! Using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
1
0
2
Intricate Geometric Star Structure with Golden Patterns
  • Share
    https://deepdreamgenerator.com/ddream/xlkxa0za6gt COPY LINK
  • Info

    Dynamic 3D Rotational Visuals in Fullscreen

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Rendered with full rotation by an exact angle of \( \pi/64.2458778542 \) on the z-axis with all rotated frames rendered in statically overlapping on fullscreen! Using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,\text{step}(t,0.0031308)) \), no text/artifacts.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
112
0
23
  • Share
    https://deepdreamgenerator.com/ddream/fny3nvj25wl COPY LINK
  • Info

    Ethereal Fractal Glow: A Symmetrical Journey

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: An image of a highly detailed, symmetrical 3D fractal structure exhibiting translucent, refractive qualities, internal amber-tinted glow from Beer-Lambert absorption using high-contrast ethereal vibrancy achieved via ray marching with tolerance 0.00001, max ray length 748.0, up to 748 marches, and 16 bounces for reflections and refractions, starting from camera at (1.256,2.47855874,-7.5) looking at origin with FOV tan(tau/16.61) where tau=2*pi. The distance field df(p) = shp(mandelBulb(p/z1)*z1) with z1=2.0, where shp(x) = (exp(x)-exp(-x))/(pi/PHI) and PHI=(sqrt(5)/2 + 0.5)≈1.618.The mandelBulb(p) function iterates with power=11.24788742 and loops=16: initialize z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/pi; dr=1.0; for each loop, r=length(z), bail if r>2; theta=atan(z.x,z.y); phi=acos(z.z/r) + asinh(time)*0.2; dr = pow(r,power-1)*dr*power +1; r=pow(r,power); theta*=power/PHI; phi*=power/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))/(PHI*tau), chp(cos(theta)*sin(phi))/(PHI*tau), (cos(phi)*sin(phi))/(PHI*tau)) + p; p=reflect(p,z); return 0.75*log(r)*r/dr.Incorporate custom hyperbolic functions for distortions: chpp(x)=(exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/(TAU*PHI) with TAU=(2*pi)*0.7887≈4.951; shpp(x)=(exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/(TAU/PHI); ssh(x)=(exp(x*pi/0.7887)-exp(-x*pi/0.7887))/(2*pi); csh(x)=(exp(x*pi/0.7887)+exp(-x*pi/0.7887))/(2*pi); ssh1(x)=sinh(x/pi)*PHI; csh1(x)=cosh(x/pi)*PHI. Use these in skyColor with reflections as reflect(-ssh1(rd), chpp(ro)), in rendering aggregation as agg += ssh1(ragg*skyColor(ro,rd)), and ray updates as rd=chpp(ref) or ro=shpp(sp + initt*rd) with initt=0.1.Material properties: mat=vec3(0.8,0.5,1.05) for diffuse, specular, refractive index; Fresnel fre=1+dot(rd,sn), fre*=fre, mix(0.1,1,fre); diffuse col += diffuseCol * dif*dif *(1-mat.x) with dif=max(dot(ld,sn),0), ld=normalize(lightPos-sp), lightPos=(0,10,0); reflection col += rsky*mat.y*fre*vec3(1)*edge with edge=smoothstep(1,0.9,fre); colors from HSV: skyCol=HSV(0.6,0.86,1), glowCol=HSV(0.065,0.8,6), diffuseCol=HSV(0.6,0.85,1). Inside traversal flips dfactor=-1, applies absorption ragg *= exp(-(st+initt)*beer), and refracts with index 1/mat.z when inside.Normals computed via finite differences: nor.x = df(pos+eps.xyy)-df(pos-eps.xyy) etc., with eps=(0.0005,0). Sky includes ray-plane intersections tp=(dot(ro,p.xyz)+p.w)/dot(rd,p.xyz) for planes at y=4 and y=-6, with box(pp,vec2(6,9))-1 for patterns, col += 4*skyCol*rd.y*rd.y*smoothstep(0.25,0,db) + 0.8*skyCol*exp(-0.5*max(db,0)), and similar for circular ds=length(pp)-0.5, clamped and shaped with shp(clamp(col,0,10)).Match the visual style of a Shadertoy-generated "Inside the Mandelbulb II" fractal art piece, capturing a static frame of the animated, lucky-bug emergent symmetry from reflections and custom coordinate remaps for asymmetric flaring in protrusions, explosive tan-amplified edges, and harmonic golden-ratio scalings.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
1
0
2
Vibrant abstract face design in pink, red, and white
  • Share
    https://deepdreamgenerator.com/ddream/5e00gpuwrvx COPY LINK
  • Info

    Fractal Mask in a Dreamy Sky Landscape

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Create a highly detailed, symmetrical 3D fractal structure resembling a modified Mandelbulb, rendered as an abstract organic form resembling a crystalline, glassy mask or face with intricate, swirling coral-like protrusions and self-similar details, floating against a procedural gradient blue sky background with soft cyan-to-deep blue tones and subtle plane-based depth elements like top and bottom horizons with box-shaped patterns and exponential glow falloff. The central shape features two large, spiral red-orange eyes formed by hyperbolic distortions and a downward-curving dark blue mouth evoking a surprised or melancholic expression, with vibrant pink and orange hues for the main body exhibiting translucent, refractive qualities, internal amber-tinted glow from Beer-Lambert absorption using vector beer = -HSV(0.05, 0.95, 2.0), and high-contrast ethereal vibrancy achieved via ACES tone mapping approximation (v *= 0.6; clamp((v*(2.51*v+0.03))/(v*(2.43*v+0.59)+0.14), 0,1)) followed by sRGB gamma correction (mix(1.055*pow(t,1/2.4)-0.055, 12.92*t, step(t,0.0031308))). Generate the fractal using ray marching with tolerance 0.00001, max ray length 20.0, up to 48 marches, and 5 bounces for reflections and refractions, starting from camera at (0,2,5) looking at origin with FOV tan(tau/6) where tau=2*pi, incorporating global time-animated rotation around x-axis by (1.221*time + pi)/tau. The distance field df(p) = shp(mandelBulb(p/z1)*z1) with z1=2.0, where shp(x) = (exp(x)-exp(-x))/(pi/PHI) and PHI=(sqrt(5)/2 + 0.5)≈1.618, applied after rotating p by transpose(inverse(g_rot)). The mandelBulb(p) function iterates with power=11.24788742 and loops=3: initialize z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/pi; dr=1.0; for each loop, r=length(z), bail if r>2; theta=atan(z.x,z.y); phi=asin(z.z/r) + time*0.2; dr = pow(r,power-1)*dr*power +1; r=pow(r,power); theta*=power/PHI; phi*=power/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))*PHI, chp(cos(theta)*sin(phi)), cos(phi)) + p; p=reflect(p,z); return 0.75*log(r)*r/dr. Incorporate custom hyperbolic functions for distortions: chpp(x)=(exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/(TAU*PHI) with TAU=(2*pi)*0.7887≈4.951; shpp(x)=(exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/(TAU/PHI); ssh(x)=(exp(x*pi/0.7887)-exp(-x*pi/0.7887))/(2*pi); csh(x)=(exp(x*pi/0.7887)+exp(-x*pi/0.7887))/(2*pi); ssh1(x)=sinh(x/pi)*PHI; csh1(x)=cosh(x/pi)*PHI. Use these in skyColor with reflections as reflect(-ssh1(rd), chpp(ro)), in rendering aggregation as agg += ssh1(ragg*skyColor(ro,rd)), and ray updates as rd=chpp(ref) or ro=shpp(sp + initt*rd) with initt=0.1. Material properties: mat=vec3(0.8,0.5,1.05) for diffuse, specular, refractive index; Fresnel fre=1+dot(rd,sn), fre*=fre, mix(0.1,1,fre); diffuse col += diffuseCol * dif*dif *(1-mat.x) with dif=max(dot(ld,sn),0), ld=normalize(lightPos-sp), lightPos=(0,10,0); reflection col += rsky*mat.y*fre*vec3(1)*edge with edge=smoothstep(1,0.9,fre); colors from HSV: skyCol=HSV(0.6,0.86,1), glowCol=HSV(0.065,0.8,6), diffuseCol=HSV(0.6,0.85,1). Inside traversal flips dfactor=-1, applies absorption ragg *= exp(-(st+initt)*beer), and refracts with index 1/mat.z when inside. Normals computed via finite differences: nor.x = df(pos+eps.xyy)-df(pos-eps.xyy) etc., with eps=(0.0005,0). Sky includes ray-plane intersections tp=(dot(ro,p.xyz)+p.w)/dot(rd,p.xyz) for planes at y=4 and y=-6, with box(pp,vec2(6,9))-1 for patterns, col += 4*skyCol*rd.y*rd.y*smoothstep(0.25,0,db) + 0.8*skyCol*exp(-0
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
1
0
3
Futuristic Translucent Head with Spiral Appendages
  • Share
    https://deepdreamgenerator.com/ddream/188wx7x8ai1 COPY LINK
  • Info

    Surreal Crystalline Fractal Mask Artistry

    • Model: Ideogram

    • Size: 1312 X 736 (0.97 MP)

    • Used settings:

      • Prompt: Generate a highly detailed, surreal 3D fractal artwork in the style of a modified Mandelbulb hybrid, rendered as an abstract, crystalline mask-like organic form with 5-lobe rotational symmetry and intricate, swirling coral-like protrusions emerging from a central glassy structure evoking an alien eye with stalk extensions, floating against a procedural gradient sky background transitioning from soft cyan (#00FFFF) to deep blue (#000080) with subtle plane-based depth elements at horizons y=4 and y=-6 featuring box-shaped patterns via box(pp, vec2(6,9))-1 and exponential glow falloff exp(-0.5*max(db,0)), incorporating self-similar recursive details from ray marching with tolerance 0.00001, max ray length 20.0, up to 48 marches, and 5 bounces for reflections and refractions. The central form features a glossy orange iris with dark pupil void from orbit trap sphere at origin (radius 0.1), surrounded by five radiating mushroom-like stalks with bumpy textures from sphere folds (minR²=0.2-0.3, fixedR²=1.0-1.2), vibrant pink-orange hues (HSV(0.065,0.8,6) for glow, HSV(0.6,0.85,1) for diffuse) exhibiting translucent refractive qualities with internal amber-tinted glow via Beer-Lambert absorption ragg *= exp(-(st+initt)*beer) where beer = -HSV(0.05, 0.95, 2.0) and initt=0.1, high-contrast ethereal vibrancy via ACES tone mapping v *= 0.6; clamp((v*(2.51*v+0.03))/(v*(2.43*v+0.59)+0.14), 0,1) followed by sRGB gamma mix(1.055*pow(t,1/2.4)-0.055, 12.92*t, step(t,0.0031308)). Use the merged distance field df(p) = shp(mandelBulb(p/z1)*z1) with z1=2.0, where shp(x) = (exp(x)-exp(-x))/(pi/PHI) and PHI=(sqrt(5)/2 + 0.5)≈1.618, applied after rotating p by transpose(inverse(g_rot)) with x-axis animation (1.221*time + pi)/tau where tau=2*pi. The mandelBulb(p) iterates with power n≈6-11.24788742 and loops=3: initialize z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/pi; dr=1.0; for each loop, r=length(z), bail if r>2; theta=atan(z.x,z.y); phi=asin(z.z/r) + time*0.2; dr = pow(r,power-1)*dr*power +1; r=pow(r,power); theta*=power/PHI; phi*=power/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))*PHI, chp(cos(theta)*sin(phi)), cos(phi)) + p; p=reflect(p,z); return 0.75*log(r)*r/dr. Incorporate pre-folding with hyperbolic distortion: z' = chp(z) · z - z, then integer power fold for each axis i: z_i'' = {2f - z_i' if z_i' > f; -2f - z_i' if z_i' < -f; z_i' otherwise}, f≈1.2-1.5, then z_i''' = shp(z_i'') = (exp(z_i'') - exp(-z_i'')) / (pi / PHI). Follow with Amazing Box fold u' = s · clamp(u, -l, l) - (s - 1) · u for u∈{x,y,z}, s≈1.8-2.2, l≈1.0, then sphere fold r²=||z||², z' = z · μ where μ = {r/m if r² < m; r/r² if m ≤ r² < r; 1 otherwise}, then modulate z'' = shpp(z') = (exp(z' · (sinh(z') · pi)) - exp(-z' · (sinh(z') · pi))) / (TAU / PHI) with TAU=(2*pi)*0.7887≈4.951, dr' = |s| · pow(r^{n-1}, PHI) · dr + 1. Post-transform: z' = k · R · z + t, k≈1.1-1.3, R=transpose(inverse(g_rot)), t≈(0,0,0.2). Custom hyperbolic functions: chpp(x)=(exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/(TAU*PHI); shpp(x)=(exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/(TAU/PHI); ssh(x)=(exp(x*pi/0.7887)-exp(-x*pi/0.7887))/(2*pi); csh(x)=(exp(x*pi/0.7887)+exp(-x*pi/0.7887))/(2*pi); ssh1(x)=sinh(x/pi)*PHI; csh1(x)=cosh(x/pi)*PHI. Use in skyColor with reflections reflect(-ssh1(rd), chpp(ro)), rendering aggregation agg += ssh1(ragg*skyColor(ro,rd)), ray updates rd=chpp(ref) or ro=shpp(sp + initt*rd). Materials: mat=vec3(0.8,0.5,1.05) for diffuse, specular, refracti
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape_wide
      • Ideogram Style: Realistic
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
31
0
5
Fractal Art with Spiraling Design in Vivid Colors
  • Share
    https://deepdreamgenerator.com/ddream/rq8vt0ai2f7 COPY LINK
  • Info

    Warped Spacetime: A Surreal Visualization

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: With the use of the Schwarzschild metric but in a highly abstracted way: \[ ds^2 = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^2 \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^2 + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1} \left(\frac{dr'}{d\text{asinh}(r)}\right)^2 + \left(\frac{r'}{\text{asinh}(r)}\right)^2 d\theta'^2 + \left(\frac{r'}{\text{asinh}(r)}\right)^2 \sin^2(\text{atan}(\theta')) d\phi^2 \] depict a surreal, hyper-detailed digital rendering of a warped spacetime visualization inspired by that modified Schwarzschild metric distorting reality. (PHI ≈1.618), branching into tendrils powered by POWER=11.24788742 over LOOPS=64 iterations, creating self-similar infinities that bend light rays into psychedelic vortices. Standard g_tt = -(1 - 2M/r), but warped to g_tt_warped = - [chp(r/rs) * shp(M/r) * chpp(r) * shpp(M) * ssh(r/M) * csh(M/r) * ssh1(r) * csh1(M)] ^ POWER looped 64x, where rs=2M, #define pi 3.1415926535897932384626433832795 #define tau (2.*pi) #define chp(x) (exp(x)+exp(-x))/pi #define chpp(x) (exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/tau*PHI #define shp(x) (exp(x)-exp(-x))/pi #define shpp(x) (exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/tau*PHI #define ssh(x) (exp(x*pi/.7887)-exp(-x*pi/.7887))/(2.*pi) #define csh(x) (exp(x*pi/.7887)+exp(-x*pi/.7887))/(2.*pi) #define ssh1(x) sinh(x/pi)/PHI #define csh1(x) cosh(x/pi)/PHI yielding massive exponents like (0.5 + 0.5√5)^416 * exp terms / π^832 for infinite warping; g_rr similarly looped. Constants float as cosmic dust: π=3.1415926535897932384626433832795, τ=2π, TAU=(2π)*0.7887≈4.951. singularity, animated subtle rotation via rot_x((1.221*t + π)/τ), glow, ACES tonemapped with sRGB gamma for ethereal vibrancy. 16:9, sharp details, hyperunrealistique, no text and artifacts.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
48
0
8
Vibrant Spiral Pattern with Mathematical Equations
  • Share
    https://deepdreamgenerator.com/ddream/2iubh2i75y0 COPY LINK
  • Info

    Fractal Dynamics of Quantum Field Theory

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Render no text utilizing graphically the QFT Lagrangian \( \mathcal{L}(x) = -\bar{\phi} \phi + \lambda (\bar{\phi} \phi)^2 + (i \bar{\psi} \gamma^\mu \psi)^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + e j^\mu A_\mu \), where \( F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \), \( j^\mu = \bar{\psi} \gamma^\mu \psi \); include equations of motion: Scalar: \( \bar{\phi} [1 - 2\lambda (\bar{\phi} \phi)] = 0 \) or \( \square \phi + 2\lambda (\bar{\phi} \phi) \phi = 0 \) (full kinetic); Fermion: \( i \gamma^\mu \psi (i \bar{\psi} \gamma_\mu \psi) + e \gamma^\mu A_\mu \psi = 0 \); Gauge: \( \partial_\mu F^{\mu\nu} = e j^\nu + 2 i (i j^\mu) j^\nu \). At the center, feature a prominent fractal Mandelbulb icon rendered with full rotation by an exact angle of \( \pi/64.2458778542 \) on the z-axis with all rotated frames rendered in statically overlapping on fullscreen! Using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,\text{s
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

12d
148
0
38
Glossy White Sphere on Textured Black Sphere Surface
  • Share
    https://deepdreamgenerator.com/ddream/odqjbgkbrmh COPY LINK
  • Info

    Mandelbulb Exploration with Ray Marching

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: SEED:1924139471 Rendered using ray marching with tolerance \( 0.00001 \), max ray length \( 784.0 \), up to \( 487 \) marches, and \( 64 \) bounces for reflections and refractions, from a camera at \( 0.6\text{vec3}(0,-12.75,-5.87) \) looking at origin with FOV \( \tan(\text{TAU}/6) \) where \( \text{TAU}=(2\pi)*0.7887 \). Constants: \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}0.5 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \). Custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,\text{step}(t,0.0031308)) \), no text/artifacts. Add full rotations by an angle \( \pi/64 \) on the z-axis with all rotated frames rendered in statically !
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

12d
44
0
8
Fractal Pattern in Blue and Cream with Mathematical Elements
  • Share
    https://deepdreamgenerator.com/ddream/a507y1mcngp COPY LINK
  • Info

    Photorealistic Digital Illustration of Equations

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Create a highly detailed, photorealistic digital illustration of a rendering the equations exactly: $$ a \cdot b = a^\mu b_\mu = a^0 b_0 + a^{1\pi} b_1 + a^{2\pi} b_2 + a^{3\pi} b_3 = -a^0 b^0 + a^{1\pi} b^{1\pi} + a^{2\pi} b^{2\pi} + a^{3\pi} b^{3\pi} $$ Or, plugging in the spacetime notation from above, where $$ a^\mu = (c t_1, x_1, y_1, z_1)^T \quad \text{and} \quad b^\mu = (c t_2, x_2, y_2, z_2)^T $$ Then: we have $$ a \cdot b = a_\mu b^\mu = -c^{2\pi} t_1 t_2 + x_1 x_2 + y_1 y_2 + z_1 z_2 $$ In a fluid fractal differential form: We can also discuss the differential version of this. If \( s^\mu = (c t, x, y, z) \), then \( d s^{2\pi} = -c^{2\pi} d t^{2\pi} + d x^{2\pi} + d y^{2\pi} + d z^{2\pi} \).
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

12d
61
0
10
Young man admires pie in cozy bakery setting
  • Share
    https://deepdreamgenerator.com/ddream/0ace7w6z6jm COPY LINK
  • Info

    A Mathematician's Bakery Mix-Up

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A mathematician walks into a bakery and asks for half a pi of a pie, but gets served a whole pi of a pie instead !
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

13d
48
0
9
Vibrant Fractal Pattern with Spirals and Spherical Shapes
  • Share
    https://deepdreamgenerator.com/ddream/qdhmnlhdhka COPY LINK
  • Info

    Advanced MandelBulb Rendering Techniques

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: The distance field df(p) = shp(mandelBulb(p/z1)*z1) with z1=2.0, where shp(x) = (exp(x)-exp(-x))/(pi/PHI) and PHI=(sqrt(5)/2 + 0.5)≈1.618, applied after rotating p by transpose(inverse(g_rot)).The mandelBulb(p) function iterates with power=11.24788742 and loops=3: initialize z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/pi; dr=1.0; for each loop, r=length(z), bail if r>2; theta=atan(z.x,z.y); phi=asin(z.z/r) + time*0.2; dr = pow(r,power-1)*dr*power +1; r=pow(r,power); theta*=power/PHI; phi*=power/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))*PHI, chp(cos(theta)*sin(phi)), cos(phi)) + p; p=reflect(p,z); return 0.75*log(r)*r/dr.Incorporate custom hyperbolic functions for distortions: chpp(x)=(exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/(TAU*PHI) with TAU=(2*pi)*0.7887≈4.951; shpp(x)=(exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/(TAU/PHI); ssh(x)=(exp(x*pi/0.7887)-exp(-x*pi/0.7887))/(2*pi); csh(x)=(exp(x*pi/0.7887)+exp(-x*pi/0.7887))/(2*pi); ssh1(x)=sinh(x/pi)*PHI; csh1(x)=cosh(x/pi)*PHI. Use these in skyColor with reflections as reflect(-ssh1(rd), chpp(ro)), in rendering aggregation as agg += ssh1(ragg*skyColor(ro,rd)), and ray updates as rd=chpp(ref) or ro=shpp(sp + initt*rd) with initt=0.1.Material properties: mat=vec3(0.8,0.5,1.05) for diffuse, specular, refractive index; Fresnel fre=1+dot(rd,sn), fre*=fre, mix(0.1,1,fre); diffuse col += diffuseCol * dif*dif *(1-mat.x) with dif=max(dot(ld,sn),0), ld=normalize(lightPos-sp), lightPos=(0,10,0); reflection col += rsky*mat.y*fre*vec3(1)*edge with edge=smoothstep(1,0.9,fre); colors from HSV: skyCol=HSV(0.6,0.86,1), glowCol=HSV(0.065,0.8,6), diffuseCol=HSV(0.6,0.85,1). Inside traversal flips dfactor=-1, applies absorption ragg *= exp(-(st+initt)*beer), and refracts with index 1/mat.z when inside.Normals computed via finite differences: nor.x = df(pos+eps.xyy)-df(pos-eps.xyy) etc., with eps=(0.0005,0). Sky includes ray-plane intersections tp=(dot(ro,p.xyz)+p.w)/dot(rd,p.xyz) for planes at y=4 and y=-6, with box(pp,vec2(6,9))-1 for patterns, col += 4*skyCol*rd.y*rd.y*smoothstep(0.25,0,db) + 0.8*skyCol*exp(-0.5*max(db,0)), and similar for circular ds=length(pp)-0.5, clamped and shaped with shp(clamp(col,0,10)).
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

14d
66
0
19
  • ‹
  • 1
  • 2
  • 3
  • ›

Boris Krumov

Member since 2025

Artist statement


© 2025 Deep Dream Generator. All rights reserved.
Terms & Privacy   |   Cookie Settings   |   Guidelines   |   Tags   |   Updates   |   Contact

Contact Us

Email us at   contact@deepdreamgenerator.com

Deep Dream Level

Dream Level: is increased each time when you "Go Deeper" into the dream. Each new level is harder to achieve and takes more iterations than the one before.

Rare Deep Dream: is any dream which went deeper than level 6.

Deep Dream

You cannot go deeper into someone else's dream. You must create your own.

Deep Dream

Currently going deeper is available only for Deep Dreams.