Ethereal Fractal Glow: A Symmetrical Journey

2
0
  • Boris Krumov's avatar Artist
    Boris Krum...
  • DDG Model
    AIVision
  • Access
    Public
  • Created
    3mos ago
  • Try

Prompt

An image of a highly detailed, symmetrical 3D fractal structure exhibiting translucent, refractive qualities, internal amber-tinted glow from Beer-Lambert absorption using high-contrast ethereal vibrancy achieved via ray marching with tolerance 0.00001, max ray length 748.0, up to 748 marches, and 16 bounces for reflections and refractions, starting from camera at (1.256,2.47855874,-7.5) looking at origin with FOV tan(tau/16.61) where tau=2*pi. The distance field df(p) = shp(mandelBulb(p/z1)*z1) with z1=2.0, where shp(x) = (exp(x)-exp(-x))/(pi/PHI) and PHI=(sqrt(5)/2 + 0.5)≈1.618.The mandelBulb(p) function iterates with power=11.24788742 and loops=16: initialize z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/pi; dr=1.0; for each loop, r=length(z), bail if r>2; theta=atan(z.x,z.y); phi=acos(z.z/r) + asinh(time)*0.2; dr = pow(r,power-1)*dr*power +1; r=pow(r,power); theta*=power/PHI; phi*=power/PHI; z = r * vec3(tan(shp(sin(theta)*sin(phi)))/(PHI*tau), chp(cos(theta)*sin(phi))/(PHI*tau), (cos(phi)*sin(phi))/(PHI*tau)) + p; p=reflect(p,z); return 0.75*log(r)*r/dr.Incorporate custom hyperbolic functions for distortions: chpp(x)=(exp(x/(cosh(x)*pi))+exp(-x/(cosh(x)/pi)))/(TAU*PHI) with TAU=(2*pi)*0.7887≈4.951; shpp(x)=(exp(x*(sinh(x)*pi))-exp(-x*(sinh(x)*pi)))/(TAU/PHI); ssh(x)=(exp(x*pi/0.7887)-exp(-x*pi/0.7887))/(2*pi); csh(x)=(exp(x*pi/0.7887)+exp(-x*pi/0.7887))/(2*pi); ssh1(x)=sinh(x/pi)*PHI; csh1(x)=cosh(x/pi)*PHI. Use these in skyColor with reflections as reflect(-ssh1(rd), chpp(ro)), in rendering aggregation as agg += ssh1(ragg*skyColor(ro,rd)), and ray updates as rd=chpp(ref) or ro=shpp(sp + initt*rd) with initt=0.1.Material properties: mat=vec3(0.8,0.5,1.05) for diffuse, specular, refractive index; Fresnel fre=1+dot(rd,sn), fre*=fre, mix(0.1,1,fre); diffuse col += diffuseCol * dif*dif *(1-mat.x) with dif=max(dot(ld,sn),0), ld=normalize(lightPos-sp), lightPos=(0,10,0); reflection col += rsky*mat.y*fre*vec3(1)*edge with edge=smoothstep(1,0.9,fre); colors from HSV: skyCol=HSV(0.6,0.86,1), glowCol=HSV(0.065,0.8,6), diffuseCol=HSV(0.6,0.85,1). Inside traversal flips dfactor=-1, applies absorption ragg *= exp(-(st+initt)*beer), and refracts with index 1/mat.z when inside.Normals computed via finite differences: nor.x = df(pos+eps.xyy)-df(pos-eps.xyy) etc., with eps=(0.0005,0). Sky includes ray-plane intersections tp=(dot(ro,p.xyz)+p.w)/dot(rd,p.xyz) for planes at y=4 and y=-6, with box(pp,vec2(6,9))-1 for patterns, col += 4*skyCol*rd.y*rd.y*smoothstep(0.25,0,db) + 0.8*skyCol*exp(-0.5*max(db,0)), and similar for circular ds=length(pp)-0.5, clamped and shaped with shp(clamp(col,0,10)).Match the visual style of a Shadertoy-generated "Inside the Mandelbulb II" fractal art piece, capturing a static frame of the animated, lucky-bug emergent symmetry from reflections and custom coordinate remaps for asymmetric flaring in protrusions, explosive tan-amplified edges, and harmonic golden-ratio scalings.

More about Ethereal Fractal Glow: A Symmetrical Journey

The image showcases a mesmerizing 3D fractal structure with intricate symmetry and translucent qualities. It features an internal amber glow and vibrant colors, enhanced by advanced ray marching techniques, creating stunning reflections and refractions. The fractal's depth and complexity are accentuated by custom hyperbolic functions and a unique light interaction, resulting in an ethereal,

Comments


Loading Dream Comments...

Discover more dreams from this artist