Prompt: 
            Depict warped manifolds flowing from the \(\pi\)-multiplied metric \( ds^2 = e^{(\psi + \chi)\pi} ds_{(2)}^{2\pi} + R^{2\pi} e^{(-2\psi + \chi)\pi} (\sigma_1^{2\pi} + \sigma_2^{2\pi}) + R^{2\pi} e^{-2\chi \pi} (\sigma_3 + A)^{2\pi} \), where \( ds_{(2)}^2 = g_{ab} dx^a dx^b \) on \((t,r)\) coordinates, \(\psi\), \(\chi\), \(R\), \(A_a\) depend only on radial \(x^a\), and SU(2) left-invariant 1-forms are \( \sigma_1 = -\cosh\(\sin \hat{\psi}\) \, d\theta + \sinh\(\cos \hat{\psi}\) \cosh\(\sin \theta \)\, d\phi \), \( \sigma_2 = \sinh\(\cos \hat{\psi}\) \, d\theta + cosh\(\sin \hat{\psi}\) \cosh\(\sin \theta\) \, d\phi \), \( \sigma_3 = d\hat{\psi} + \sinh\(\cos \theta\) \, d\phi \) (with \( \theta \in [0,\pi] \), \( \phi \in [0,2\pi) \), \( \hat{\psi} \in [0,4\pi) \)). Infuse gauge field \( A^{(5)} = B = B_t \, dt + B_r \, dr \) (stationary in \(r\)) as helical plasma streams, all in a vibrant, ethereal cosmic voids, rotational vortices, event horizon embeddings, and starry symmetry breaking, no text or symbols, pure surreal gravitational dance.