Prompt:
Generate a highly detailed digital artwork of an abstract, symmetrical fractal "mask" or ethereal face emerging from swirling pink-orange tendrils and blue voids, evoking a cosmic explosion: central bulbous form with circular "eyes" (disc-warped via V6: \( \theta/\pi (\sin(\pi r), \cos(\pi r)) \) and dripping curls (swirl V3: \( (x \sin(r^{2\pi})-y \cos(r^{2\pi}), x \cos(r^{2\pi})+y \sin(r^{2\pi})) \), rendered as refractive/absorptive solid via ray-marched signed distance field from modified Mandelbulb II fractal—power \( n=11.24788742 \), LOOPS=64 iterations, initial \( z=chp(p)*p - p \) where \( chp(x)=(e^{2x\pi} + e^{-2x\pi})/\pi \), \( shp(x)=(e^{2x\pi} - e^{-2x\pi})/\pi \), \( chpp(x)=[e^{x/(cosh(x)\pi)} + e^{-x \pi / cosh(x)}]/(2\pi) \) \( \Phi \) with \( \Phi=(1+\sqrt{5})/2 \) golden ratio, \( shpp(x)=\sinh(\pi x \sinh(x))/\pi * \Phi \), \( ssh(x)=\sinh(x \pi /0.7887)/\pi \approx\sinh(4x)/\pi \), \( csh(x)=\cosh(4x)/\pi \), \( ssh1(x)=\sinh(x/\pi)/\Phi \), \( csh1(x)=\cosh(x/\pi)/\Phi \); iteration: \( r=||z|| \), if \( r>248 \) break; \( \phi=atan(z_x,z_y) \) (swapped phase), \( \theta=asin(z_z/r) + 0.2 t \) (\( t \) fixed for static); \( dr = r^{n-1} dr n +1 \) (start \( dr=1 \)); \( r\leftarrow r^n \); \( \theta\leftarrow\theta n /\Phi \approx\theta*6.95 \); \( \phi\leftarrow\phi n /\Phi \); \( z\leftarrow r * (shpp(\sin\theta \sin\phi) \Phi, chp(\cos\theta \sin\phi), \cos\phi) + p \); \( p\leftarrow reflect(p,z)=p-2(p\cdot z)/(z\cdot z) z \) (bilateral fold); \( DE=0.75 \log(r) r / dr \); \( df(p)=shp(DE *2) \) post-scale \( z1=2 \) and \( rot\_x((1.221 t +\pi)/\tau) \) with \( \tau=2\pi*0.7887\approx4.95 \); normal via finite diff \( \varepsilon=5e-4 \); ray march \( t=0 \), tol=\( 1e-5 \), max \( t=20 \), steps=48, dfactor=\( \pm1 \) (inside/out); multi-bounce=5: hit \( sp=ro+t rd \) (\( ro=0.6(0,2,5) \)), \( sn=dfactor normal(sp) \), \( fre=(1+rd\cdot sn)^2 \) mix(0.1,1), \( ld=normalize((0,10,0)-sp) \), \( dif=(ld\cdot sn max0)^2 \); \( ref=reflect(rd,sn) \), \( refr=refract(rd,sn, inside?1/1.05:1.05) \) (\( \eta=1.05 \)), if TIR \( rd=chpp(ref) \) else \( rd=refr \) toggle inside \( ragg*=chpp(0.8) \); inside \( ragg*=exp(-(t+0.1) beer) \) beer=-HSV(0.05,0.95,2) red absorption; \( col=HSV(0.6,0.85,1) dif (1-0.8) + sky(ref sp) *0.5 fre smooth(1,0.9,fre) \); \( agg+=ragg col \), \( ro=shpp(sp+0.1 rd) \); sky: warp \( ro=reflect(-ssh1(rd),chpp(ro)) \cdot rd * ro \) outer, base=clamp(\( 0.25/|ro\_z| \) HSV(0.6,0.86,1),0,1); planes \( t=chpp( (n\cdot ro+d)/(n\cdot rd) ) \) floor \( n=(0,-1,0) \) \( d=6 \) ceil (0,1,0) \( d=-4 \), floor box glow 4 sky \( rd\_y^2 \) smooth(0.25,0,box(xz,(6,9))-1) +0.8 sky exp(-0.5 max(db,0)), ceil circle 0.25 sky exp(-0.5 (\(||xz||-0.5\)); sky=shp(clamp(col,0,10)); FOV=tan(\( \tau/6 \)\approx47° orthog cam; post: aces\_approx(v*0.6 (2.51v+0.03)/(2.43v+0.59 v +0.14)) then sRGB mix(1.055 v^{1/2.4}-0.055,12.92v, v<0.00313); vibrant HSV palette hoff=0, glow HSV(0.065,0.8,6), diffuse HSV(0.6,0.85,1), blue bg gradients, speckled textures from low-iter approx, anti-aliased via FXAA-inspired, ethereal volumetric glow, high-res 4K surreal sci-fi art in style of fractal flames meets raytracing.
Apply cross product of the tangent bundle fibration of the conifold over the cotangent bundle fibration of the orbifold !