Deep Dream Generator DDG
  • AI Upscaler
  • AI Video
  • AI Music
  • About
  • Blog
  • Login Sign Up

Boris Krumov

Deep Dreamer

1.14K 5

  • Dreams 106
  • Following 15
  • Followers 5
  • Liked 378
  • Latest
  • Best
  • About
Abstract Texture with Earthy Tones and Patterns
  • Share
    https://deepdreamgenerator.com/ddream/ztlt35fii1z COPY LINK
  • Info

    Earthy Abstract Texture with Depth and Complexity

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: <lora:Intricacy Vibe:1.0>(initialized with :0.00125)(texture details : t = \frac{1}{2.4774\pi}\left[\tan\left(\frac{\tilde{t}+\tilde{r}}{2}\right) + \tan\left(\frac{\tilde{t}-\tilde{r}}{2}\right)\right], r = \frac{1}{2.4774\pi}!\left[\tan!\left(\frac{\tilde{t}+\tilde{r}}{2}\right) - \tan\left(\frac{\tilde{t}-\tilde{r}}{2}\right)\right] )(Iteration count:512) Draw and render a: (Shape: ds^{48.123321\pi} = \frac{ -dt^{2.8778\pi} + dr^{2.7887\pi} + \sin^{1.445877854\pi}\cdot\text{r} , d\Omega^{1.2278\pi}}{4.785587 \cos^{2.144\pi}\cdot\text{t} + r^{2.7447\pi} \cos^{2.4774\pi}\cdot\text{t} - r^{2.5665\pi}})
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

1h
19
0
2
Mystical Forest with Enchanting Creature and Plants
  • Share
    https://deepdreamgenerator.com/ddream/xgw933pffaw COPY LINK
  • Info

    Enchanted Forest with a Curious Creature

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: <lora:Intricacy Vibe:1.0> EXTREMELY INTRICATE SPARKLING IRIDESCENT OPALESCENT MAGIC DUST BURSTING INTO THE AIR, LIGHT RAYS, GLOWING HYBRID FLOWER, WHIMSICAL PATTERNED STYLIZED MYSTICAL FOREST FRACTAL BOTANICAL DETAILING LIGAMORPHOUS TENDRILS CRACKLES WEBS NETS STRINGS UNIQUE CREATURE ADORABLE BIG BLACK EYES MUNCHKIN HOLDING A MAGIC GLOWING BIZARRE FLOWER HYBRID PLANT WITH ULTRA INTRICATE DETAILING TRACERY Morphology CURLICUES By Susan Seddon Boulet Mandelbrot Hundertwasser Gaudi EPIC CREATURE MAGICAL PLANT MASTERPIECE
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

1h
20
0
5
Abstract Representation of a Black Hole with Glow
  • Share
    https://deepdreamgenerator.com/ddream/fuanh4oyvul COPY LINK
  • Info

    Mysteries of the Cosmic Void Unveiled

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Depict in 3D an arbitrary vector field $V_a(\bfx)$ can then be expanded as \begin{equation} V_a(\bfx) = \int \frac{d^3k}{(2\pi)^3} \left[ \tilde V^L(\bfk) \Psi^{L,\bfk}_a(\bfx) + \tilde V^1(\bfk) \Psi^{1,\bfk}_a(\bfx) + \tilde V^2(\bfk) \Psi^{2,\bfk}_a(\bfx) \right], \label{eqn:vectorexpansion} \end{equation} in terms of Fourier expansion coefficients, \begin{eqnarray} \tilde V^L(\bfk) = \int \, d^3x\, V^a(\bfx) \left[\Psi^{L,\bfk}_a(\bfx)\right]^* = -\int\, d^3x\,\left[\Psi^{\bfk}(\bfx) \right]^* \frac{1}{k} \nabla^a V_a(\bfx), \nn \\ \tilde V^1(\bfk) = \int \, d^3x\, V^a(\bfx) \left[\Psi^{1,\bfk}_a(\bfx)\right]^* = \int\, d^3x\, \left[\Psi^{\bfk}(\bfx) \right]^* \frac{1}{| \bfk \times \hatz |} \epsilon_{abc} \hat z^a \nabla^b V^c(\bfx), \nn \\ \tilde V^2(\bfk) = \int \, d^3x\, V^a(\bfx) \left[\Psi^{2,\bfk}_a(\bfx)\right]^* = \int\, d^3x\, \left[\Psi^{\bfk}(\bfx)\right]^* \frac{-i}{k| \bfk \times \hatz |} \hat{z}^a (\nabla_a \nabla_b - g_{ab} \nabla^2) V^b(\bfx). \end{eqnarray}
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

17h
0
0
1
Modern Curved Wave Sculpture on Light Wooden Floor
  • Share
    https://deepdreamgenerator.com/ddream/yqsyz8scydm COPY LINK
  • Info

    Modern Minimalist Curvilinear Design Showcase

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: (Iteration count:512) Draw and render a: (Shape: ds^{48.123321\pi} = \frac{ -dt^{2.8778\pi} + dr^{2.7887\pi} + \sin^{1.445877854\pi}\cdot\text{r} \, d\Omega^\{1.2278\pi}}{4.785587 \cos^{2.144\pi}\cdot\text{t} + r^{2.7447\pi} \cos^{2.4774\pi}\cdot\text{t} - r^{2.5665\pi}})(initialized with :0.0000125) detail: t = \frac{1}{2.4774\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], r = \frac{1}{2.4774\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right]
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

19h
37
0
9
Intricately Structured 3D Organic Skeletal Object
  • Share
    https://deepdreamgenerator.com/ddream/rpzcgnxp1kq COPY LINK
  • Info

    Futuristic Lattice Sphere Design Unveiled

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: A G$_{2}$-structure on a 7-dimensional manifold is characterized by a 3-form $\varphi $, which reduces the structure group to the exceptional Lie group G$_{2}$. When $\varphi $ is both closed and co-closed, the structure is torsion-free, and the associated metric is Ricci-flat. The G$_{2}$-Ricci flow is defined by the following equation % %e3 #&# \begin{equation} \frac{\partial \varphi}{\partial t} = \Delta _{d} \varphi + \mathcal{L}_{X} \varphi + \mathrm{Ric} \lrcorner \ast \varphi + T(\varphi ), \label{eq3} \end{equation} % where % \begin{itemize} % \item $\Delta _{d}$ is the Hodge-de Rham Laplacian, a second-order elliptic operator that acting on the 3-form $\varphi $. % \item $\mathcal{L}_{X} \varphi $ is the Lie derivative of $\varphi $ along a vector field $X$. It is first-order operator. % \item $(\mathrm{Ric} \lrcorner \ast \varphi) $ is the contraction of the Ricci tensor with the 4-form $\ast \varphi $. % \item $T(\varphi )$ represents the torsion of the G$_{2}$-structure, which measures the deviations from the torsion-free condition. \begin{equation} \varphi = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}, \label{eq1} \end{equation} % where $e^{ijk} = e^{i} \wedge e^{j} \wedge e^{k}$.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

19h
56
0
17
Intricate Symmetrical Mandala Design with Geometry
  • Share
    https://deepdreamgenerator.com/ddream/uhr4dnno1xc COPY LINK
  • Info

    Symmetrical Mandala with Geometric Patterns

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using Iteration count = 512 for a shape defined by: ds^{48.123321\pi} = \frac{ -dt^{1.28778\pi} + dr^{1.67887\pi} + \sin^{1.445877854\pi}\text{r} \, d\Omega^\{1.2278\pi}}{4 \cos^{1.244\pi}\text{t} + r^{1.2447\pi}\cos^{2.447\pi}\text{t} - r^{2.5665\pi}} with: t = \frac{1}{2.448\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right), r = \frac{1}{2.448\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], initialized with 0.000125 both.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

19h
42
0
12
Intricate Fractal Design with Gold and Cream Patterns
  • Share
    https://deepdreamgenerator.com/ddream/ke2hupk6cz0 COPY LINK
  • Info

    Golden Swirls: A Mesmerizing Fractal Tapestry

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using iteration count = 512 for a shape defined by: ds^{48.123321\pi} = \frac{ -dt^{1.28778\pi} + dr^{1.67887\pi} + \sin^{1.445877854\pi}\cdot\text{r} \, d\Omega^\{1.2278\pi}}{4 \cos^{1.244\pi}\cdot\text{t} + r^{2.447\pi} \cos^{2.447\pi}\cdot\text{t} - r^{2.5665\pi}} With: t = \frac{1}{2.448\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2.448\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], initialized with 0.000125 both.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

1d
50
0
5
Intricate Symmetrical Pattern with Vibrant Colors
  • Share
    https://deepdreamgenerator.com/ddream/2y3gnlqm24g COPY LINK
  • Info

    Vibrant Geometric Swirls in Bold Colors

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using iteration count = 512 for a shape defined by: ds^{48.123321\pi} = \frac{ -dt^{1.28778\pi} + dr^{1.67887\pi} + \sin^{1.445877854\pi}\cdot\text{r} \, d\Omega^\{1.2278\pi}}{4 \cos^{1.244\pi}\cdot\text{t} + r^{2.447\pi} \cos^{2.447\pi}\cdot\text{t} - r^{2.5665\pi}} With: t = \frac{1}{2.448\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2.448\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], initialized with 0.000125 both.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

1d
53
0
7
Textured Surface of Colorful Particles in Abstract Form
  • Share
    https://deepdreamgenerator.com/ddream/th52s5ibnrb COPY LINK
  • Info

    Vibrant Abstract Dot Pattern Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using (iteration_count:512) for a shape defined by: ds^{2.4123321\pi} = \frac{ -dt^{1.28778\pi} + dr^{1.67887\pi} + \sin^{1.445877854\pi}\cdot\text{r} \, d\Omega^\{1.2278\pi}}{4 \cos^{1.244\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}} With: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

2d
44
0
8
Colorful Spiral with Mathematical Equations and Graphs
  • Share
    https://deepdreamgenerator.com/ddream/052drxeay6c COPY LINK
  • Info

    Geometric Spiral: A Colorful Math Journey

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw using iteration count = 512 for a shape defined by: ds^{24.123321\pi} = \frac{ -dt^{12.8778\pi} + dr^16.7887\pi + \sin^{14.45877854\pi}\cdot\text{r} \, d\Omega^\{12.278\pi}}{4 \cos^{12.44\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}} With: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

2d
133
0
31
Vibrant Mathematical Spiral with Colorful Background
  • Share
    https://deepdreamgenerator.com/ddream/r95t56qoi1z COPY LINK
  • Info

    Vibrant Swirls of Mathematical Artistry

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Draw and render a: Shape: ds^{24.123321\pi} = \frac{ -dt^{12.8778\pi} + dr^{16.7887\pi} + \sin^{14.45877854\pi}\cdot\text{r} \, d\Omega^\{12.278\pi}}{4 \cos^{12.44\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}} Iteration count = 512 Textured by: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3d
66
0
24
Intricate Abstract Design with Vibrant Swirling Patterns
  • Share
    https://deepdreamgenerator.com/ddream/uadqw9oaavx COPY LINK
  • Info

    Vibrant Swirls of Color on Dark Canvas

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Draw and render a: Shape: ds^{24.123321\pi} = \frac{ -dt^{12.8778\pi} + dr^{16.7887\pi} + \sin^{14.45877854\pi}\cdot\text{r} \, d\Omega^\{12.278\pi}}{4 \cos^{12.44\pi}\cdot\text{t} + r^{2\pi} \cos^{2\pi}\cdot\text{t} - r^{2.5665\pi}}Iteration count = 512Textured by: t = \frac{1}{2\pi}\left[\tan\left(\frac{\bar{t}+\hat{r}}{2}\right) + \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right], \quad r = \frac{1}{2\pi}\!\left[\tan\!\left(\frac{\bar{t}+\hat{r}}{2}\right) - \tan\left(\frac{\bar{t}-\hat{r}}{2}\right)\right].
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

3d
35
0
12
Intricate Black and White Fractal Flower Design
  • Share
    https://deepdreamgenerator.com/ddream/0g2libje2uj COPY LINK
  • Info

    Elegant Black and White Fractal Flower Design

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: Draw a 3D fractal shape generated from the iterative formula \( z_{n+1} = z_n^{0.54877845\pi} + c \), with p-norm radial structure \( r = \sqrt{x^{0.7887\pi} + y^0.7887\pi + z^0.7887\pi} \). Texture it using \( f(x,y) = \sin(x^{0.7887\pi} + y^2) + \cos(z^{0.45788754\pi}) \), enhanced with micro-detail from gradient \( \nabla f \) and hyperbolic fractal sum $$ f_{\text{fract}} = \sum \sinh(\sin(2\pi^n x)) \cosh(\cos(2\pi^n y))/2^n. $$
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4d
0
0
2
Abstract Sculpture with Navy Blue Curves and Layers
  • Share
    https://deepdreamgenerator.com/ddream/tuhcq3ganj4 COPY LINK
  • Info

    Flowing Blue Waves: An Abstract Sculpture

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Ultra-detailed 3D shape from \( z_{n+1} = z_n^{0.54877845\pi} + c \), p-norm radial \( r = \sqrt{x^{0.7887\pi} + y^{0.7887\pi} + z^{0.7887\pi}} \), textured with \( f(x,y) = \sin(x^{0.7887\pi} + y^2) + \cos(z^{0.45788754\pi}) \), micro-detail via \( \nabla f \) and hyperbolic fractal sum \( f_{\text{fract}} = \sum \frac{\sinh(\sin(2\pi^n x)) \cosh(\cos(2\pi^n y))}{2^n} \), refractive caustics, soft subsurface scattering, gradient studio lighting
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

4d
91
0
19
Vibrant Toroidal Shape with Swirling Patterns and Gradients
  • Share
    https://deepdreamgenerator.com/ddream/3nrv85dsmp0 COPY LINK
  • Info

    Vibrant 3D Abstract Shape with Swirling Colors

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Sculpture, paper, 3D, reflections, refractions, gradient background: Shape: $$ z_{n+1} = z_n^2 + c, \quad r = \sqrt{x^2 + y^2 + z^2}, \quad \theta = \arctan(y/x) $$ Texture: $$ f(x, y) = \sin(x^2 + y^2) + \cos(z), \quad \phi = \tan^{-1}(y/z) $$ Detail: $$ \nabla f(x, y, z), \quad f_{\text{fract}} = \sum_{n=0}^{\infty} \frac{\sin(2^n x) \cos(2^n y)}{2^n} $$
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5d
69
0
6
Vibrant Mandala Design with Blue and Purple Layers
  • Share
    https://deepdreamgenerator.com/ddream/2hqqz7zkh60 COPY LINK
  • Info

    Teal and Purple Mandala in Starry Night

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=16.24877842 \) for about 84 primary lobes and intricate fractal surfacing. To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^{2.144\pi} + y^{2.144\pi} + z^{2.144\pi}} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 24.78 \) after 64 iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Use also: \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^{2\pi}} \, dx = \sqrt{\pi}, \quad f(x) = x^{2.618\pi} + c, \quad z_{k+1} = z_k^{2.618\pi} + c, \quad |z| = \sqrt{x^{2.618\pi} + y^{2.618\pi}}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5d
1
0
2
Intricate Flower Mandala with Cosmic Background
  • Share
    https://deepdreamgenerator.com/ddream/prj2lef6n0o COPY LINK
  • Info

    Cosmic Flower Radiance in Vibrant Colors

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=8 \) for about 7-8 primary lobes and intricate fractal surfacing. To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^{2\pi} + y^{2\pi} + z^{2\pi}} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 2 \) after many iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Use also: \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^{2\pi}} \, dx = \sqrt{\pi}, \quad f(x) = x^{2\pi} + c, \quad z_{k+1} = z_k^{2\pi} + c, \quad |z| = \sqrt{x^{2\pi} + y^{2\pi}}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5d
68
0
14
Fractal Pattern with Purple and Blue Hues
  • Share
    https://deepdreamgenerator.com/ddream/yrq9xtqusr2 COPY LINK
  • Info

    Cosmic Fractal: Vibrant Starburst Design

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=8 \) for about 7-8 primary lobes and intricate fractal surfacing. To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^2 + y^2 + z^2} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 2 \) after many iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Use also: \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^2} \, dx = \sqrt{\pi}, \quad f(x) = x^2 + c, \quad z_{k+1} = z_k^2 + c, \quad |z| = \sqrt{x^2 + y^2}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

5d
45
0
14
Colorful Spherical Pattern with Mathematical Equations
  • Share
    https://deepdreamgenerator.com/ddream/xr3kt6m16xc COPY LINK
  • Info

    Abstract Sphere of Scientific Exploration

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: Generate the following: Represent 3D points in spherical coordinates where \( r = \sqrt{x^{2\pi} + y^{2\pi} + z^{2\pi}} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 24.78 \) after 64 iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects. Using also: $$ \sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^2} \, dx = \sqrt{\pi}, \quad f(x) = x^2 + c, \quad z_{k+1} = z_k^2 + c, \quad |z| = \sqrt{x^2 + y^2}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta) $$ $$ r = \sqrt{x^{2\pi} + y^{2\pi} + z^{2\pi}}, \quad \theta = \text{acos}(z/r), \quad \phi = \text{atan2}(y,x), \quad v^n = r^n [\sin(n\theta)\cos(n\phi), \sin(n\theta)\sin(n\phi), \cos(n\theta)], \quad v_{k+1} = v_k^n + c, \quad DE \approx \frac{1}{2}\frac{(r-R)}{|dr/dv|} $$ along with additional generic math like \( \sum \), \( \int \), \( \frac{\partial}{\partial x} \), \( \lim_{x\to\infty} \), \( \Gamma(z) \), \( \zeta(s) \), and graphs of functions such as sine waves, parabolas, and axes arrows. Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6d
147
2
40
Three-Dimensional Abstract Shapes and Formulas
  • Share
    https://deepdreamgenerator.com/ddream/pfseczotkdh COPY LINK
  • Info

    Abstract Fusion of Art and Science

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: RENDER: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \) WITH THE USE OF: \[ ds^{2\pi} = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^{2\pi} \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^{2\pi} dt'^{2\pi} + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1\pi} \left(\frac{dr'}{d\text{asinh}(r')}\right)^{2\pi} dr'^{2\pi} + \left(\frac{r'}{\text{asinh}(r')}\right)^{2\pi} d\theta'^{2\pi} + \left(\frac{r'}{\text{asinh}(r')}\right)^{2\pi} \sin^{2\pi}(\text{atan}(\theta')) d\phi^{2\pi} \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \).
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

6d
64
0
16
Vibrant Cosmic Design with Galaxies and Equations
  • Share
    https://deepdreamgenerator.com/ddream/mwg2ms032em COPY LINK
  • Info

    Cosmic Harmony: A Vibrant Universe Design

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A hyper-detailed surreal QFT imagery blending knot diagrams, holography, and rippling KK fibrations tachyon wavy distortions evoking 7D collider heat with oscillating extra dims and perturbed normals. Central 7D orb pulses \( E = f \varphi \mu B + \eta H \) orbiting \( S = \int \left[ \sum_i (1/2) \langle \psi_i | \hat{H}_i | \psi_i \rangle + \sum_{\{i,j\}} (1/3) w_{ij} \langle \psi_i | \psi_j * \psi_j \rangle + \sum_{i,j} \lambda_{ij} (f_i/f_j - \varphi)^2 + \sum i \kappa_i |B_i \cdot \mu_i| + \eta H + \sum_{\{i,j\}} \gamma_{ij} w_{knot,ij} \right] d\tau \). Fractal wavy spirals: Left, 3D CS \( S_{CS} = (k/4\pi) \int \text{Tr}(A \wedge dA + (2/3) A \wedge A \wedge A) \) (flat \( F=0 \), \( k \in \mathbb{Z} \)), \( W(\gamma)=\text{Tr}[P \exp(i \oint_\gamma A)] \) Jones braids as \( w\{knot,ij\} \) anyons, \( \delta n^a \sim \partial_\perp \varphi \) brane normals. Right, 4D YM \( S_{YM} = -1/(4g^2) \int \text{Tr}(F \wedge *F) \) \( F=dA+A\wedge A \) merging to 3D massive, \( h\{mn\} e^{ik \cdot y} \) dim waves in AdS/CFT. Upper, shifts: 1-form \( A \) (3D loops) \(\rightarrow\) 2-form \( B \) (5D, \( H=dB/\Omega_2=dB+A \triangleright B \) crossed \( G\rightarrow H \), \( \Omega_1=dA+[A,A]/2-\alpha(B) \); \( S=\int (1/2)H\wedge H + (k/24\pi^2)B\wedge H\wedge H + 2CS \langle A,\Omega_2 \rangle+\langle \Omega_1,B \rangle \), EOM \( dH+(k/12\pi^2)H\wedge H=J_{(1)} \), \( G \perp n \) normals) \(\rightarrow\) 3-form \( C \) (7D, \( G=dC/\Omega_3=dC+[A,C]+[B,B] \) 2-crossed \( G\rightarrow H\rightarrow K \triangleright \delta \), \( \Omega_1=0/\Omega_2=0 \), Peiffer \( \delta \Omega_1=[\Omega_1,B] \); \( S=\int (1/2)G\wedge G + (k/(2\pi)^3 \cdot 3!) CS_7(C)=\text{Tr}[C\wedge dC\wedge (dC)^2+(3/2)C\wedge C\wedge dC\wedge dC+(3/5)C^3\wedge dC+(1/7)C^4] + 3CS \langle A,\Omega_3 \rangle+\langle B,\Omega_2 \rangle+\langle C,\Omega_1 \rangle + (1/2)\text{Tr}(\Omega_3\wedge\Omega_3)+m^2\text{Tr}(C\wedge C) \), EOM \( d\Omega_3+[A,* \Omega_3]+(k/4\pi)\Omega_2=J_{(2)} \), \( *G=G \) M5 normals). Lower, KK & tachyon: \( T^3/CY_3 \) \( ds^7=ds^4+e^{2\sigma(y)}dy^2 \) (\( \sigma \) wavy, \( \delta g_{mn}h_{mn}e^{ik \cdot y} \), \( \int_{T^3}G \) tadpole \( N_{M5} \) chiral, \( \theta \int F\wedge F \) axion from \( \int_{T^3}C \), \( m_nn/R+\delta m \) ripples, warped \( \sigma(y) \) sinusoidal inflation minis); \( V(T)=-\mu^2T^2/2+\lambda T^4 \) \( <T>=\sqrt{\mu^2/\lambda} \) Spin(7)\(\rightarrow\)G₂, \( \Omega_3\rightarrow\Omega_3+Td\beta \) flux stab, \( \delta n^a \epsilon \partial_\perp \varphi \) Goldstones, \( \delta X^\perp \sim T \) DBI waves, KK-Melvin tachyons R wavy \( SO(32)\rightarrow U(1)^{16} \) D9\(\rightarrow\)D6, SymTFT \( \theta \) RR 3/5 defects, codim-3 strings \( w\{knot,ij\} \) \( W(\Sigma^3)=\text{Tr} P \exp(\int_{\Sigma^3} C) \) bordisms Donaldson, AdS₇ CFTs. Icons: \( \varphi \) vev, \( dG=0 \), Peiffer \( \{\beta\wedge\beta\}\{pf\} \), Gauss \( \Sigma_i^3 \times \Sigma_j^3 \) links, flux knots, tach minima brane vacua, \( \delta J \sim \text{Im}\Omega \) CY normals, inflation wavy dims. LaTeX overlays: 'Wavy Dims & Normals: 1-Form Waves to 3-Form Ripples in YM/CS 7D KK QFT Tachyon Fury'. Ultra-res intricate linework: Feynman-Escher-KK topology with fluid wavy dims/normals ripples, vibrant clashes evoking string vibes/inflation minis. Iterate 512 times !
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
52
0
17
Intricate Black and White Fractal Design with Spirals
  • Share
    https://deepdreamgenerator.com/ddream/d71ci1qna7j COPY LINK
  • Info

    Mesmerizing Black-and-White Fractal Design

    • Model: DaVinci2

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: Render: a Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(-0.25,12.21,db)+4.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.751v+1.3))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.1255\text{pow}(t,1/12.4)-0.755,12.92t,\text{step}(t,0.31308)) \), no text/artifacts, with the use of: \[ ds^2 = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^2 \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^2 dt'^2 + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1} \left(\frac{dr'}{d\text{asinh}(r')}\right)^2 dr'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 d\theta'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 \sin^2(\text{atan}(\theta')) d\phi^2 \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \).
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
101
0
19
Surreal Abstract Design with Colorful Flowing Patterns
  • Share
    https://deepdreamgenerator.com/ddream/7deefkryb4n COPY LINK
  • Info

    Enigmatic Abstract Swirls and Shadows

    • Model: Ideogram

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: With the use of: \[ ds^2 = -\left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right) c^2 \left(\frac{dt'}{d\ln(1 + \frac{t}{t_0})}\right)^2 dt'^2 + \left(1 - \frac{r_s}{\text{asinh}^{-1}(r')}\right)^{-1} \left(\frac{dr'}{d\text{asinh}(r')}\right)^2 dr'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 d\theta'^2 + \left(\frac{r'}{\text{asinh}(r')}\right)^2 \sin^2(\text{atan}(\theta')) d\phi^2 \] and using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742-exp(\pi/\text{PHI}) \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(-0.25,12.21,db)+4.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.751v+1.3))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.1255\text{pow}(t,1/12.4)-0.755,12.92t,\text{step}(t,0.31308)) \), no text/artifacts.
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
      • Ideogram Style: Auto
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

7d
49
0
11
Dragons and Underwater Ruins in Vibrant Landscapes
  • Share
    https://deepdreamgenerator.com/ddream/phoalwba2ew COPY LINK
  • Info

    Dragons Clash by Waterfalls and Ruins

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: The Ancient Wisdom of the Dragons was what brought Atlantis into knowledgeable blooming prosperity. The homosapientic stupidity, greed and decadence was what brought it all down...
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

8d
48
0
10
Radiant Stylized Face with Blue Skin and Cosmic Patterns
  • Share
    https://deepdreamgenerator.com/ddream/98a0ed4kn28 COPY LINK
  • Info

    Mystical Abstract Face in Vibrant Hues

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Generate a highly detailed digital artwork of an abstract, symmetrical fractal "mask" or ethereal face emerging from swirling pink-orange tendrils and blue voids, evoking a cosmic explosion: central bulbous form with circular "eyes" (disc-warped via V6: \( \theta/\pi (\sin(\pi r), \cos(\pi r)) \) and dripping curls (swirl V3: \( (x \sin(r^{2\pi})-y \cos(r^{2\pi}), x \cos(r^{2\pi})+y \sin(r^{2\pi})) \), rendered as refractive/absorptive solid via ray-marched signed distance field from modified Mandelbulb II fractal—power \( n=11.24788742 \), LOOPS=64 iterations, initial \( z=chp(p)*p - p \) where \( chp(x)=(e^{2x\pi} + e^{-2x\pi})/\pi \), \( shp(x)=(e^{2x\pi} - e^{-2x\pi})/\pi \), \( chpp(x)=[e^{x/(cosh(x)\pi)} + e^{-x \pi / cosh(x)}]/(2\pi) \) \( \Phi \) with \( \Phi=(1+\sqrt{5})/2 \) golden ratio, \( shpp(x)=\sinh(\pi x \sinh(x))/\pi * \Phi \), \( ssh(x)=\sinh(x \pi /0.7887)/\pi \approx\sinh(4x)/\pi \), \( csh(x)=\cosh(4x)/\pi \), \( ssh1(x)=\sinh(x/\pi)/\Phi \), \( csh1(x)=\cosh(x/\pi)/\Phi \); iteration: \( r=||z|| \), if \( r>248 \) break; \( \phi=atan(z_x,z_y) \) (swapped phase), \( \theta=asin(z_z/r) + 0.2 t \) (\( t \) fixed for static); \( dr = r^{n-1} dr n +1 \) (start \( dr=1 \)); \( r\leftarrow r^n \); \( \theta\leftarrow\theta n /\Phi \approx\theta*6.95 \); \( \phi\leftarrow\phi n /\Phi \); \( z\leftarrow r * (shpp(\sin\theta \sin\phi) \Phi, chp(\cos\theta \sin\phi), \cos\phi) + p \); \( p\leftarrow reflect(p,z)=p-2(p\cdot z)/(z\cdot z) z \) (bilateral fold); \( DE=0.75 \log(r) r / dr \); \( df(p)=shp(DE *2) \) post-scale \( z1=2 \) and \( rot\_x((1.221 t +\pi)/\tau) \) with \( \tau=2\pi*0.7887\approx4.95 \); normal via finite diff \( \varepsilon=5e-4 \); ray march \( t=0 \), tol=\( 1e-5 \), max \( t=20 \), steps=48, dfactor=\( \pm1 \) (inside/out); multi-bounce=5: hit \( sp=ro+t rd \) (\( ro=0.6(0,2,5) \)), \( sn=dfactor normal(sp) \), \( fre=(1+rd\cdot sn)^2 \) mix(0.1,1), \( ld=normalize((0,10,0)-sp) \), \( dif=(ld\cdot sn max0)^2 \); \( ref=reflect(rd,sn) \), \( refr=refract(rd,sn, inside?1/1.05:1.05) \) (\( \eta=1.05 \)), if TIR \( rd=chpp(ref) \) else \( rd=refr \) toggle inside \( ragg*=chpp(0.8) \); inside \( ragg*=exp(-(t+0.1) beer) \) beer=-HSV(0.05,0.95,2) red absorption; \( col=HSV(0.6,0.85,1) dif (1-0.8) + sky(ref sp) *0.5 fre smooth(1,0.9,fre) \); \( agg+=ragg col \), \( ro=shpp(sp+0.1 rd) \); sky: warp \( ro=reflect(-ssh1(rd),chpp(ro)) \cdot rd * ro \) outer, base=clamp(\( 0.25/|ro\_z| \) HSV(0.6,0.86,1),0,1); planes \( t=chpp( (n\cdot ro+d)/(n\cdot rd) ) \) floor \( n=(0,-1,0) \) \( d=6 \) ceil (0,1,0) \( d=-4 \), floor box glow 4 sky \( rd\_y^2 \) smooth(0.25,0,box(xz,(6,9))-1) +0.8 sky exp(-0.5 max(db,0)), ceil circle 0.25 sky exp(-0.5 (\(||xz||-0.5\)); sky=shp(clamp(col,0,10)); FOV=tan(\( \tau/6 \)\approx47° orthog cam; post: aces\_approx(v*0.6 (2.51v+0.03)/(2.43v+0.59 v +0.14)) then sRGB mix(1.055 v^{1/2.4}-0.055,12.92v, v<0.00313); vibrant HSV palette hoff=0, glow HSV(0.065,0.8,6), diffuse HSV(0.6,0.85,1), blue bg gradients, speckled textures from low-iter approx, anti-aliased via FXAA-inspired, ethereal volumetric glow, high-res 4K surreal sci-fi art in style of fractal flames meets raytracing. Apply cross product of the tangent bundle fibration of the conifold over the cotangent bundle fibration of the orbifold !
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9d
36
0
8
Surreal Face with Intricate Swirling Patterns in Color
  • Share
    https://deepdreamgenerator.com/ddream/cekdr9usvb7 COPY LINK
  • Info

    Surreal Face in Vibrant Patterns

    • Model: DaVinci2

    • Size: 1728 X 1296 (2.24 MP)

    • Used settings:

      • Prompt: Generate a highly detailed digital artwork of an abstract, symmetrical fractal "mask" or ethereal face emerging from swirling pink-orange tendrils and blue voids, evoking a cosmic explosion: central bulbous form with circular "eyes" (disc-warped via V6: \( \theta/\pi (\sin(\pi r), \cos(\pi r)) \) and dripping curls (swirl V3: \( (x \sin(r^2)-y \cos(r^2), x \cos(r^2)+y \sin(r^2)) \), rendered as refractive/absorptive solid via ray-marched signed distance field from modified Mandelbulb II fractal—power \( n=11.24788742 \), LOOPS=3 iterations, initial \( z=chp(p)*p - p \) where \( chp(x)=(e^x + e^{-x})/\pi \), \( shp(x)=(e^x - e^{-x})/\pi \), \( chpp(x)=[e^{x/(cosh(x)\pi)} + e^{-x \pi / cosh(x)}]/(2\pi) \) \( \Phi \) with \( \Phi=(1+\sqrt{5})/2 \) golden ratio, \( shpp(x)=\sinh(\pi x \sinh(x))/\pi * \Phi \), \( ssh(x)=\sinh(x \pi /0.7887)/\pi \approx\sinh(4x)/\pi \), \( csh(x)=\cosh(4x)/\pi \), \( ssh1(x)=\sinh(x/\pi)/\Phi \), \( csh1(x)=\cosh(x/\pi)/\Phi \); iteration: \( r=||z|| \), if \( r>248 \) break; \( \phi=atan(z_x,z_y) \) (swapped phase), \( \theta=asin(z_z/r) + 0.2 t \) (\( t \) fixed for static); \( dr = r^{n-1} dr n +1 \) (start \( dr=1 \)); \( r\leftarrow r^n \); \( \theta\leftarrow\theta n /\Phi \approx\theta*6.95 \); \( \phi\leftarrow\phi n /\Phi \); \( z\leftarrow r * (shpp(\sin\theta \sin\phi) \Phi, chp(\cos\theta \sin\phi), \cos\phi) + p \); \( p\leftarrow reflect(p,z)=p-2(p\cdot z)/(z\cdot z) z \) (bilateral fold); \( DE=0.75 \log(r) r / dr \); \( df(p)=shp(DE *2) \) post-scale \( z1=2 \) and \( rot\_x((1.221 t +\pi)/\tau) \) with \( \tau=2\pi*0.7887\approx4.95 \); normal via finite diff \( \varepsilon=5e-4 \); ray march \( t=0 \), tol=\( 1e-5 \), max \( t=20 \), steps=48, dfactor=\( \pm1 \) (inside/out); multi-bounce=5: hit \( sp=ro+t rd \) (\( ro=0.6(0,2,5) \)), \( sn=dfactor normal(sp) \), \( fre=(1+rd\cdot sn)^2 \) mix(0.1,1), \( ld=normalize((0,10,0)-sp) \), \( dif=(ld\cdot sn max0)^2 \); \( ref=reflect(rd,sn) \), \( refr=refract(rd,sn, inside?1/1.05:1.05) \) (\( \eta=1.05 \)), if TIR \( rd=chpp(ref) \) else \( rd=refr \) toggle inside \( ragg*=chpp(0.8) \); inside \( ragg*=exp(-(t+0.1) beer) \) beer=-HSV(0.05,0.95,2) red absorption; \( col=HSV(0.6,0.85,1) dif (1-0.8) + sky(ref sp) *0.5 fre smooth(1,0.9,fre) \); \( agg+=ragg col \), \( ro=shpp(sp+0.1 rd) \); sky: warp \( ro=reflect(-ssh1(rd),chpp(ro)) \cdot rd * ro \) outer, base=clamp(\( 0.25/|ro\_z| \) HSV(0.6,0.86,1),0,1); planes \( t=chpp( (n\cdot ro+d)/(n\cdot rd) ) \) floor \( n=(0,-1,0) \) \( d=6 \) ceil (0,1,0) \( d=-4 \), floor box glow 4 sky \( rd\_y^2 \) smooth(0.25,0,box(xz,(6,9))-1) +0.8 sky exp(-0.5 max(db,0)), ceil circle 0.25 sky exp(-0.5 (\(||xz||-0.5\)); sky=shp(clamp(col,0,10)); FOV=tan(\( \tau/6 \)\approx47° orthog cam; post: aces\_approx(v*0.6 (2.51v+0.03)/(2.43v+0.59 v +0.14)) then sRGB mix(1.055 v^{1/2.4}-0.055,12.92v, v<0.00313); vibrant HSV palette hoff=0, glow HSV(0.065,0.8,6), diffuse HSV(0.6,0.85,1), blue bg gradients, speckled textures from low-iter approx, anti-aliased via FXAA-inspired, ethereal volumetric glow, high-res 4K surreal sci-fi art in style of fractal flames meets raytracing.
      • Upscale & Enhance: 1
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9d
76
0
20
Sleek Toroidal Shape with Textured Matte Black and Purple
  • Share
    https://deepdreamgenerator.com/ddream/608s3hwcm53 COPY LINK
  • Info

    Sleek Black and Purple Textured Torus Design

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Apply: TE \otimes_{TB} TF \xrightarrow{h_E \otimes h_F} TE \otimes_{TB} TF \xrightarrow{\ \ \ \ \tau\ \ \ \ } T(E \otimes F). vec3 col = fract(clamp(vec3(0.125/abs(reflect(cross(rd,ro),reflect(shpp(ro),chpp(rd))).z))*skyCol, -120.0, 16.54788745));
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9d
34
0
6
3D Abstract Sculpture of Intertwined Metallic Ribbons
  • Share
    https://deepdreamgenerator.com/ddream/4eux43wzhkc COPY LINK
  • Info

    Mesmerizing 3D Geometric Design Display

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: The supersymmetric action in 4D supergravity as a seamless, abstract geometric manifold in curved spacetime, rendered at 8K resolution with iridescent metallic gradients transitioning from deep sapphire blues and silvers for bosonic fields to vibrant emerald greens and golds for fermionic interactions, evoking quantum foam and holographic duality. Core instructions: Depict graphically, using no text, the full action \( S[e,\psi] = S[e] + S_f[e,\psi] + S_I[e,\psi] \), where the exact, completely detailedly concised maths is: \[ S[e,\psi] = S[e] + S_f[e,\psi] + S_I[e,\psi] = \int dx\, e\, e^a \wedge e^b \wedge F^{cd} \epsilon_{abcd} + \frac{1}{6} \int dx \, \theta^a \wedge e^b \wedge e^c \wedge e^d \epsilon_{abcd} + \int dx\, (\bar{\psi} \gamma_5 \gamma_a \psi)\, (\bar{\psi} \gamma_5 \gamma^a \psi) \, , \] with \(\theta^a \equiv \frac{i}{2} \left( \bar{\psi} \gamma^a D_\mu \psi - \overline{D_\mu \psi} \gamma^a \psi \right) dx^\mu \), all indices a,b,c,d=0,1,2,3 in the orthonormal frame bundle, e^a as coframe 1-forms (vielbeins), F^{cd} = dA^{cd} + A^{c e} \wedge A^{e d} the curvature 2-form of the spin connection, D_μ the covariant derivative along coordinate 1-forms dx^μ, ψ a Majorana spinor field, γ^a Dirac matrices in curved space, ε_{abcd} the Levi-Civita symbol with ε_{0123}=+1, and integrals over the 4-manifold with oriented volume form e = e^0 ∧ e^1 ∧ e^2 ∧ e^3. Visualize the first term S[e] as a swirling vortex of interlocking tetrahedral frames (symbolizing ε_{abcd} contraction) threaded by golden flux tubes (F^{cd} curvature) piercing a lattice of silver vierbein arrows (e^a, e^b) emanating from a central black hole singularity, representing the Einstein-Cartan Chern-Simons topological term. Overlay the fermionic torsion term S_f[e,ψ] as twisting helical ribbons (θ^a 1-forms derived from ψ bilinears) coiling around the vierbeins e^b,c,d into a knotted 4-simplex lattice with emerald sparks at intersection nodes, illustrating the 1/6 prefactor via sixfold symmetric bulbous expansions. Integrate the interaction S_I[e,ψ] as pulsating wave interference patterns of dual green scalar densities (ψ-bar γ5 γ_a ψ and conjugate), forming self-dual chiral currents that ripple across the manifold, modulating the geometry with fractal-like spinor foam bubbles where |ψ|^2 > threshold, colored by pseudoscalar density via smooth escape-time analogy (iterate bilinear up to 500 steps, hue H = 120° * iter / max, S=0.8, V=1). Ensure the entire composition flows as a unified holographic projection on a de Sitter boundary, with anti-aliased edges via Gaussian smoothing, subtle gravitational lensing distortions, and a faint cosmic microwave glow fading to void black; no equations, labels, or text visible; ultra-sharp filaments on torsion helices and current waves; aspect ratio 16:9; in the style of mathematical physics visualization.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

9d
33
0
6
Surreal Head with Cosmic Elements and Vivid Colors
  • Share
    https://deepdreamgenerator.com/ddream/3eiymmloinc COPY LINK
  • Info

    Mystical Figure in Cosmic Harmony

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: He has fuse with the universe and become one intelligence, being with infinity. He dare consume the fruits of the knowledge of good and evil and gain the forbidden God consciousness. now he is equal with the gods.... and gods do not kill gods but you are not the same, billions of you are expandable...as you are replicas producing replicas...machines to build, sustain the archonic civilization and continue the cultural memory...
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

10d
49
0
7
Glossy Black Spherical Object with Lattice Design
  • Share
    https://deepdreamgenerator.com/ddream/q6qvewd8aul COPY LINK
  • Info

    Elegant Hollow Sphere with Geometric Design

    • Model: DaVinci2

    • Size: 1152 X 864 (1.00 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Cinematic film still, shot on v-raptor XL, film grain, vignette, color graded, post-processed, cinematic lighting, 35mm film, live-action, best quality, atmospheric, a masterpiece, epic, stunning, dramatic
      • Upscale & Enhance: 0
      • Aspect Ratio: landscape
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
77
0
18
Surreal Landscape with Pulsating Luminous Core
  • Share
    https://deepdreamgenerator.com/ddream/orslqi6df93 COPY LINK
  • Info

    Surreal Sphere in a Colorful Dreamscape

    • Model: AIVision

    • Size: 1024 X 1024 (1.05 MP)

    • Used settings:

      • Prompt: A render of an object with power \( P = 11.24788742\pi \), fixed iterations \( \text{LOOPS} = 256 \), initialized as \( z = \text{chp}(p) * p - p \) where \( \text{chp}(x) = \frac{(\exp(x) + \exp(-x))}{\pi} \), \( \text{shp}(x) = \frac{(\exp(x) - \exp(-x))}{\pi} \), \( \text{chpp}(x) = \frac{(\exp(x / (\cosh(x) \pi)) + \exp(-x / (\cosh(x) / \pi)))}{2 \pi \Phi} \), \( \text{shpp}(x) = \frac{(\exp(x \sinh(x) \pi) - \exp(-x \sinh(x) \pi))}{2 \pi \Phi} \), \( \text{ssh1}(x) = \frac{\sinh(x / \pi)}{\Phi} \), \( \text{csh1}(x) = \frac{\cosh(x / \pi)}{\Phi} \), \( \Phi = \frac{(1 + \sqrt{5})}{2} \) golden ratio, \( \tau = 2 \pi * 0.7887 \); iteration: \( r = ||z|| \), if \( r > 2 \) continue, \( \theta = \text{asin}(z_z / r) + 0.2t \) animated, \( \varphi = \text{atan}(z_x, z_y) \), \( dr = r^{P - 1} dr P + 1 \), \( r = r^P \), \( \theta = \theta P / \Phi \), \( \varphi = \varphi P / \Phi \), \( z += r * (\tan(\text{shp}(\sin\theta \sin\varphi)) \Phi, \text{chp}(\cos\theta \sin\varphi), \cos\varphi) + p \), \( p = \text{reflect}(p, z) \), final \( \text{DE} = 0.75 \log(r) r / dr \) scaled by \( \text{shp}(\text{DE} * 2) \); ray-marched with max marches = 96, tol = 10^{-5}, bounces = 8, refraction index 1.01275, Beer absorption \( \exp(-(t + 0.1) * -\text{HSV}(0.05, 0.95, 2)) \), diffuse \( \text{HSV}(0.6, 0.85, 1) \), glow \( \text{HSV}(0.065, 0.8, 6) \), sky \( \text{HSV}(0.6, 0.86, 1) \) with warped reflections via ssh1, chpp, \( \text{fract}(\text{clamp}(0.125 / |\text{reflected cross}| * \text{skyCol}, -120, 16.547)) \); rotated by \( \text{rot\_x}((1.221 t + \pi) / \tau) \), camera at \( (0, 2, 5) * 0.6 \), FOV \( \tan(\tau / 6) \), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background. Cinematic film still, shot on v-raptor XL, film grain, vignette, color graded, post-processed, cinematic lighting, 35mm film, live-action, best quality, atmospheric, a masterpiece, epic, stunning, dramatic
      • Upscale & Enhance: 0
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

11d
30
0
8
Vibrant 3D Structure with Intricate Patterns and Gradients
  • Share
    https://deepdreamgenerator.com/ddream/pca16ofpz06 COPY LINK
  • Info

    Vibrant 3D Render of Abstract Geometry

    • Model: AIVision

    • Size: 1536 X 1536 (2.36 MP)

    • Used settings:

      • Prompt: A highly detailed 3D render of an object with power P=11.24788742, fixed iterations LOOPS=64, initialized as z = chp(p)*p - p where chp(x)=(exp(x)+exp(-x))/π, shp(x)=(exp(x)-exp(-x))/π, chpp(x)=(exp(x/(cosh(x)π))+exp(-x/(cosh(x)/π)))/(2π Φ), shpp(x)=(exp(x sinh(x) π)-exp(-x sinh(x) π))/(2π Φ), ssh1(x)=sinh(x/π)/Φ, csh1(x)=cosh(x/π)/Φ, Φ=(1+√5)/2 golden ratio, τ=2π*0.7887; iteration: r=||z||, if r>2 continue, θ=asin(z_z/r)+0.2t animated, φ=atan(z_x,z_y), dr = r^{P-1} dr P +1, r=r^P, θ=θ P/Φ, φ=φ P/Φ, z += r * (tan(shp(sinθ sinφ)) Φ, chp(cosθ sinφ), cosφ) + p, p=reflect(p,z), final DE=0.75 log(r) r / dr scaled by shp(DE *2); ray-marched with max marches=96, tol=10^{-5}, bounces=8, refraction index 1.05, Beer absorption exp(-(t+0.1) * -HSV(0.05,0.95,2)), diffuse HSV(0.6,0.85,1), glow HSV(0.065,0.8,6), sky HSV(0.6,0.86,1) with warped reflections via ssh1, chpp, fract(clamp(0.125 / |reflected cross| * skyCol, -120,16.547)); rotated by rot_x((1.221 t + π)/τ), camera at (0,2,5)*0.6, FOV tan(τ/6), ACES tone-mapped, sRGB gamma; central bulbous form with pink core, orange lobes, black voids, cyan shell, rainbow tunnel background.
      • Upscale & Enhance: 1
      • Aspect Ratio: square
  • Dream page
  • Report

    Would you like to report this Dream as inappropriate?

12d
32
0
9
  • ‹
  • 1
  • 2
  • 3
  • 4
  • ›

Boris Krumov

Member since 2025

Artist statement


© 2025 Deep Dream Generator. All rights reserved.
Terms & Privacy   |   Cookie Settings   |   Guidelines   |   Tags   |   Updates   |   Contact

Contact Us

Email us at   contact@deepdreamgenerator.com

Deep Dream Level

Dream Level: is increased each time when you "Go Deeper" into the dream. Each new level is harder to achieve and takes more iterations than the one before.

Rare Deep Dream: is any dream which went deeper than level 6.

Deep Dream

You cannot go deeper into someone else's dream. You must create your own.

Deep Dream

Currently going deeper is available only for Deep Dreams.