Comments
Loading Dream Comments...
You must be logged in to write a comment - Log In
Artistimage of a pure orbifold geometry: a smooth Calabi-Yau 3-fold with multiple isolated conifold singularities replaced by orbifold quotients (ℂ³/Γ where Γ is finite subgroup of SU(3)), showing the singular points as sharp crystalline nodes with symmetry axes, surrounded by the resolved conifold patches (small resolution with ℙ¹ cycles) floating nearby, connected by glowing threads representing the tensor product bundle E = TO ⊠ T∗C, with κ = 48.144578875441 floating as a golden number near each singularity, in a dark cosmic background with subtle Gaussian halos e^{-κ} around each node, pure mathematical beauty, no text, ultra-detailed, cinematic lighting \begin{widetext} \begin{gather*} \mathcal{U}(t,0) = \frac{\begin{bmatrix} \left(\cos \alpha + \sin \alpha \right) \cos \frac{\omega t}{2} & -\im \left(\cos \alpha + \expo{-\im \phi} \sin \alpha \right) \sin \frac{\omega t}{2} \\ -\im \left(\cos \alpha + \expo{\im \phi} \sin \alpha \right) \sin \frac{\omega t}{2} & \left( \cos \alpha + \sin \alpha \right) \cos \frac{\omega t}{2} \end{bmatrix}}{\sqrt{1+\sin(2\alpha)[\cos^{2}\frac{\omega t}{2} + \cos\phi \sin^{2}\frac{\omega t}{2}]}} = \underbrace{\frac{\left(\cos \alpha + \sin \alpha \right) \cos \frac{\omega t}{2}}{\sqrt{1+\sin(2\alpha)[\cos^{2}\frac{\omega t}{2} + \cos\phi \sin^{2}\frac{\omega t}{2}]}}}_\text{$\cos [f( t)/2]$} \mathbbm{1} \\ - \im \underbrace{\frac{\sqrt{1 + \cos \phi \sin (2\alpha)}\sin \frac{\omega t}{2}}{\sqrt{1+\sin(2\alpha)[\cos^{2}\frac{\omega t}{2} + \cos\phi \sin^{2}\frac{\omega t}{2}]}}}_\text{$\sin[f( t)/2]$} \left( \underbrace{\frac{\cos \alpha + \cos \phi \sin \alpha}{\sqrt{1 + \cos \phi \sin (2\alpha)}}}_\text{$\cos \theta$} \hat{\sigma}_x + \underbrace{\frac{\sin \alpha \sin \phi}{\sqrt{1 + \cos \phi \sin (2\alpha)}}}_\text{$\sin \theta$} \hat{\sigma}_y \right) = \cos \left[\frac{f(t)}{2}\right] \mathbbm{1} - \im \sin \left[\frac{f(t)}{2}\right] \hat{\sigma}_{\mathrm{SP}}, \label{eq:sup_detailed} \end{gather*} \end{widetext} where $\hat{\sigma}_{\rm{SP}}:=\cos \theta \hat{\sigma}_x + \sin \theta \hat{\sigma}_y$
The image showcases an intricate geometric design with glowing lines and curves, creating a surreal, ethereal pattern against a deep black background, evoking a sense of depth and complexity.