Prompt:
Generate a highly detailed 3D fractal image of a customized Mandelbulb variant, rendered with power=11.24788742 and maximum iterations LOOPS=20, exhibiting intricate spiky and twisted symmetry. Define hyperbolic functions component-wise: shp(\mathbf{x}) = (\exp(\mathbf{x}) - \exp(-\mathbf{x})) / \pi and chp(\mathbf{x}) = (\exp(\mathbf{x}) + \exp(-\mathbf{x})) / \pi, where \mathbf{x} is a vector applied per component, and let \Phi = (1 + \sqrt{5})/2 (golden ratio). For a point \mathbf{p} = (x, y, z), initialize \mathbf{z} = chp(\mathbf{p}) \odot \mathbf{p} - \mathbf{p} (component-wise multiplication). Then, iterate for i=0 to LOOPS-1: compute r = |\mathbf{z}|, if r > 2 then continue to next iteration; \theta = \atan(z_x, z_y), \phi = \asin(z_z / r); update dr = r^{power-1} \cdot dr \cdot power + 1 (starting dr=1); update r = r^{power}; \theta = \theta \cdot power / \Phi; \phi = \phi \cdot power / \Phi; set \mathbf{z} = r \cdot \left( \tan\left( shp\left( \sin(\theta) \sin(\phi) \right) \right) \Phi, , \smoothstep(-1.2, 12078., power \cdot chp\left( \cos(\theta) \sin(\phi) \right) ), , \cos(\phi) \right) + \mathbf{p}; then \mathbf{p} = \reflect(\mathbf{p}, \mathbf{z}) = \mathbf{p} - 2 \frac{\mathbf{p} \cdot \mathbf{z}}{\mathbf{z} \cdot \mathbf{z}} \mathbf{z}; finally update r = |\mathbf{z}|. The distance estimator is 0.75 \cdot \log(r) \cdot r / dr for ray marching. Color the surface with a smooth gradient from central orange (RGB: 255,165,0) at low escape times to pink (RGB: 255,192,203) mid-iterations and outer cyan-blue (RGB: 0,255,255), using orbit trap coloring for intricate details. Set against a deep navy blue background (RGB: 0,0,128), with subtle specular highlights and glassy refraction effects to mimic crystalline structure, viewed from a frontal angle centered on the z-axis, in ultra-high resolution 4K with anti-aliasing.