Prompt: Several new types of non-volatile RAM, which preserve data while powered down, are under development. The technologies used include carbon nanotubes and approaches utilizing Tunnel magnetoresistance. Amongst the 1st generation MRAM, a 128 kbit (128 × 210 bytes) chip was manufactured with 0.18 µm technology in the summer of 2003.[citation needed] In June 2004, Infineon Technologies unveiled a 16 MB (16 × 220 bytes) prototype again based on 0.18 µm technology. There are two 2nd generation techniques currently in development: thermal-assisted switching (TAS)[29] which is being developed by Crocus Technology, and spin-transfer torque (STT) on which Crocus, Hynix, IBM, and several other companies are working.[30] Nantero built a functioning carbon nanotube memory prototype 10 GB (10 × 230 bytes) array in 2004. Whether some of these technologies can eventually take significant market share from either DRAM, SRAM, or flash-memory technology, however, remains to be seen.
Prompt: Several new types of non-volatile RAM, which preserve data while powered down, are under development. The technologies used include carbon nanotubes and approaches utilizing Tunnel magnetoresistance. Amongst the 1st generation MRAM, a 128 kbit (128 × 210 bytes) chip was manufactured with 0.18 µm technology in the summer of 2003.[citation needed] In June 2004, Infineon Technologies unveiled a 16 MB (16 × 220 bytes) prototype again based on 0.18 µm technology. There are two 2nd generation techniques currently in development: thermal-assisted switching (TAS)[29] which is being developed by Crocus Technology, and spin-transfer torque (STT) on which Crocus, Hynix, IBM, and several other companies are working.[30] Nantero built a functioning carbon nanotube memory prototype 10 GB (10 × 230 bytes) array in 2004. Whether some of these technologies can eventually take significant market share from either DRAM, SRAM, or flash-memory technology, however, remains to be seen.
Would you like to report this Dream as inappropriate?
Prompt:
Several new types of non-volatile RAM, which preserve data while powered down, are under development. The technologies used include carbon nanotubes and approaches utilizing Tunnel magnetoresistance. Amongst the 1st generation MRAM, a 128 kbit (128 × 210 bytes) chip was manufactured with 0.18 µm technology in the summer of 2003.[citation needed] In June 2004, Infineon Technologies unveiled a 16 MB (16 × 220 bytes) prototype again based on 0.18 µm technology. There are two 2nd generation techniques currently in development: thermal-assisted switching (TAS)[29] which is being developed by Crocus Technology, and spin-transfer torque (STT) on which Crocus, Hynix, IBM, and several other companies are working.[30] Nantero built a functioning carbon nanotube memory prototype 10 GB (10 × 230 bytes) array in 2004. Whether some of these technologies can eventually take significant market share from either DRAM, SRAM, or flash-memory technology, however, remains to be seen.
Modifiers:
elegant
extremely detailed
intricate
oil on canvas
photorealistic
beautiful
high detail
dynamic lighting
hyperrealistic
high definition
crisp quality
coherent
serene
graceful
4k HDR
Dream Level: is increased each time when you "Go Deeper" into the dream. Each new level is harder to achieve and
takes more iterations than the one before.
Rare Deep Dream: is any dream which went deeper than level 6.
Deep Dream
You cannot go deeper into someone else's dream. You must create your own.
Deep Dream
Currently going deeper is available only for Deep Dreams.