Prompt:
A highly detailed, 64D CGI scene visualizing the chiral anomaly in SU(N) gauge theories with Weyl fermions, depicting the action I[ψ,ψ̄,A_μ] = ∫dx (1/2 tr F_μν F^μν + ψ̄ D ψ) in d-dimensional Minkowski space, with A_μ = A_μ^a T_a, F_μν = ∂_μ A_ν - ∂_ν A_μ + ie [A_μ,A_ν], [T_a,T_b] = i f_abc T_c, tr(T_a T_b) = -1/2 δ_ab, D = i γ^μ (∂_μ 1 + ie A_μ) = i γ^μ D_μ. Animate gauge transformations g = exp(i θ^a T_a), transforming A_μ^g = g A_μ g^{-1} + (i/e) (∂_μ g) g^{-1}, ψ^g = g ψ, ψ̄^g = ψ̄ g^{-1}, showing classical invariance I[ψ^g,ψ̄^g,A_μ^g] = I[ψ,ψ̄,A_μ] and covariant conservation (D_μ)_ab J_b^μ = 0 with J_a^μ = ψ̄ γ^μ T_a ψ, (D_μ)_ab = δ_ab ∂_μ + e f_abc A_μ^c. Illustrate quantum generating functional Z[η,η̄,j_a^μ] = ∫ dψ dψ̄ dA_μ exp(i I + i ∫dx [η̄ ψ + ψ̄ η + j_a^μ A_μ^a]), non-invariance under infinitesimal changes ψ^g ≈ (1 + i δθ^a T_a) ψ, ψ̄^g ≈ ψ̄ (1 - i δθ^a T_a), yielding Jacobian J[A_μ,g] = exp(i α_1[A_μ,δθ]) with α_1 = -i ∫dx δθ^a A_a(A_μ), leading to Z = Z_g and anomaly equation <(D_μ)_ab J_b^μ> = <A_a(A_μ)> = 1/(32π²) ε^μνρσ tr(T_a F_μν F_ρσ). Symbolically show fermionic measure non-invariance as twisting field lines (red for ψ, blue for A_μ), curling vectors for F_μν, glowing loops for gauge orbits, breaking symmetry bubbles for anomaly, propagating waves for quantum violations, in starry vacuum with motion-blur time evolution, realistic CGI lighting, no text/equations—pure icons like helical curls for derivatives, intersecting surfaces for traces, epsilon tensors as 4D Levi-Civita crossings, looping GIF for perpetual dynamics.