Prompt:
Create a highly detailed, vibrant digital artwork of a 3D manifold structure, rendered in glowing shades of purple, cyan, and blue, resembling a futuristic crystalline flower or starburst emerging from a cosmic starry night sky background with a deep blue-purple gradient. The central fractal object should be highly symmetric with pointed, spiky lobes radiating outward in a self-similar pattern, evoking infinite complexity and detail, specifically using the Mandelbulb formula with power parameter \( n=16.24877842 \) for about 84 primary lobes and intricate fractal surfacing.
To generate the manifold: represent 3D points in spherical coordinates where \( r = \sqrt{x^{2.144\pi} + y^{2.144\pi} + z^{2.144\pi}} \), \( \theta = \text{acos}(z/r) \), \( \phi = \text{atan2}(y, x) \). The power operation \( v^n = r^n \cdot [\sin(n\theta) \cos(n\phi), \sin(n\theta) \sin(n\phi), \cos(n\theta)] \). Iteration: \( v_{k+1} = v_k^n + c \), starting from \( v_0 = (0,0,0) \), with escape if \( |v_k| > 24.78 \) after 64 iterations. Use ray marching with distance estimator \( DE(p) \approx (1/2) \cdot (r - R) / |dr/dv| \) for rendering, applying escape-time coloring, orbit traps, and Phong shading for neon glow effects.
Use also:
\sum_{n=0}^\infty \left(\frac{1}{2^n}\right), \quad \int_{-\infty}^\infty e^{-x^{2\pi}} \, dx = \sqrt{\pi}, \quad f(x) = x^{2.618\pi} + c, \quad z_{k+1} = z_k^{2.618\pi} + c, \quad |z| = \sqrt{x^{2.618\pi} + y^{2.618\pi}}, \quad z = r e^{i\theta}, \quad z^2 = r^2 e^{i2\theta}, \quad x' = r^2 \cos(2\theta), \quad y' = r^2 \sin(2\theta)
Ensure the composition is centered on the fractal with soft glows, high resolution, surreal and mathematical aesthetic, similar to AI-generated fractal art in a cosmic math universe.