Prompt:
Exact mathematical details to visualize:Quantum Gaussian Wave Packet Identity:
The identity is:
\psi(x,t) = \frac{1}{\sigma^{1/2}\pi^{1/4}}\frac{1}{\sqrt{1+\frac{i\hbar t}{m\sigma^2}}} \times \exp \left(-\frac{1}{2\left(\sigma^2+\frac{i\hbar t}{m} \right)}\left(x^2-2i\sigma^2\bar{p}/\hbar\left(x-\frac{\bar{p}}{2m}t\right) \right) \right)
Derivation: Let p_0 = \bar{p}/\hbar and \gamma = \sigma^2 + i \hbar t / m. LHS exponent E_L = -\frac{\sigma^2}{2} (p_0 - k)^2 + i k x - i \frac{\hbar k^2 t}{2 m} = c + b k + a k^2, where a = -\gamma / 2, b = \sigma^2 p_0 + i x, c = -\sigma^2 p_0^2 / 2. Complete the square: a k^2 + b k + c = a (k - k_0)^2 + (c - b^2/(4a)), with k_0 = (\sigma^2 p_0 + i x) / \gamma. Constant term simplifies to -\frac{i \hbar t \sigma^2 p_0^2}{2 m \gamma} + \frac{i \sigma^2 p_0 x}{\gamma} - \frac{x^2}{2 \gamma}, matching RHS.Flame Fractal Generation:
Defined by N functions f_i: \mathbb{R}^2 \to \mathbb{R}^2. Affine part: \begin{pmatrix} x' \ y' \end{pmatrix} = \begin{pmatrix} a_i & b_i \ d_i & e_i \end{pmatrix} \begin{pmatrix} x \ y \end{pmatrix} + \begin{pmatrix} c_i \ f_i \end{pmatrix}. Then f_i(x, y) = \sum_j w_{ij} v_j(x', y'), with \sum w_{ij} = 1.
Key variations:Swirl: v(x, y) = (x \sin r^2 - y \cos r^2, x \cos r^2 + y \sin r^2), r^2 = x^2 + y^2.
Bubble: v(x, y) = \frac{4}{r^2 + 4} (x, y).
Julia: v(x, y) = r^{-1/2} (\cos(\theta/2 + k \pi), \sin(\theta/2 + k \pi)), \theta = \atan2(y, x).
Spherical: v(x, y) = \frac{1}{r^2} (x, y).
Horseshoe: v(x, y) = \frac{1}{r} (x - y)(x + y).
Iteration: Start random (x, y), color=0. For M~10^7: Pick i by p_i (\sum p_i=1), (x,y)=f_i(x,y), color=(color + c_i)/2. Bin hits, render log(1+hits), gamma correction density^0.25, HSV palette.Shared Themes: Visualize Gaussian blurs exp(-r^2/(2\sigma^2)) in fractals akin to wave spreading; complex exponentials like swirl ~ z exp(i r^2) paralleling quantum exp(i (k x - \hbar k^2 t / (2m))). Background gradients from purple to blue, foreground spirals in red-green-yellow, vertical composition for teardrop flow.