Prompt:
***Add wavy normals and orbifold conifolding into infinity !*** 64D-rendered, translucent amorphous transparent blob with 84-108 fused lobes and ***absolutely infinite*** conifold spikes, resembling a fluid glass-like structure, suspended against a non-linear wavy HSV gradient background (210° to 200°, 100% saturation, 80% to 50% value). The blob's surface exhibits iridescent highlights and organic, vein-like dark streaks, generated procedurally without embedded text. Use the following mathematical framework: - **Core Shape (SDF in Hyperbolic Space):** Blend metaballs with hyperbolic distance \( d_h(\mathbf{p}, \mathbf{c}_i) = \frac{1}{\sqrt{|\kappa|}} \cosh^{-1} (1 + \frac{|\kappa| \|\mathbf{p} - \mathbf{c}_i\|^2}{2}) \), \(\kappa = -0.5\), radii \( r_i \in [0.3, 0.6] \), centers \( \mathbf{c}_i \) perturbed by low-frequency noise. Combine via smoothed minimum \( s_{\text{base}}(\mathbf{p}) = \text{smin_h}_i (d_h(\mathbf{p}, \mathbf{c}_i) - r_i) \). - **Distortion (Multi-Scale Noise):** Apply Gabor wavelet noise \( N(\mathbf{p}) = \sum_{o=1}^5 \sum_{j=1}^{12} a_o G(f_o \mathbf{R}_j \mathbf{p}; \mathbf{k}_j, \sigma_o, \psi_{o j}) \), where \( G(\mathbf{p}) = \exp(-\|\mathbf{p}\|^2/(2\sigma^2)) \cos(\mathbf{k} \cdot \mathbf{p} + \psi) \), \( a_o = 0.4^o \), \( f_o = 2.2^o \), \( \sigma_o = 1/f_o \), \( \mathbf{k}_j = 2\pi f (\cos \theta_j \sin \phi_j, \sin \theta_j \sin \phi_j, \cos \phi_j) \). Displace with \( s_{\text{blob}}(\mathbf{p}) = s_{\text{base}}(\mathbf{p} + 0.18 \nabla N(2.5 \mathbf{p})) - 0.12 N(4 \mathbf{p})^2 \). - **Hyper-Dimensional Projection:** Lift to 64D Calabi-Yau-like manifold \( \sum_{k=1}^5 z_k^5 = 0 + V(\mathbf{z}) \), perturb with \( V = \sum \lambda_k |z_k|^2 + \mu N^{(5)}(\mathbf{z}) \), project via \( \mathbf{p} = (\Re z_1/(1 - \Im z_3), \Re z_2/(1 - \Im z_3), \Re z_3/(1 - \Im z_3)) \). - **Material (Optical Properties):** Refraction with Sellmeier IOR \( n^2(\lambda) = 1 + \sum_{i=1}^3 \frac{B_i \lambda^2}{\lambda^2 - C_i} \) (B₁=0.7, C₁=0.01; B₂=0.4, C₂=0.1; B₃=1.0, C₃=100 μm²), trace polychromatic rays (λ=400-700 nm). Iridescence via diffraction \( \sin \theta_m = \sin \theta_i + m \lambda / d \), \( d(\mathbf{p}) = 1 + 0.5 N(20 \mathbf{p}) \) μm, intensity \( I(\theta) \propto (\sin(N_g \pi \Delta / \lambda)/\sin(\pi \Delta / \lambda))^2 \), \( N_g = 50 \). Subsurface with Gray-Scott density \( \frac{\partial u}{\partial t} = D_u \nabla^2 u - u v^2 + F (1 - u) \), \( \frac{\partial v}{\partial t} = D_v \nabla^2 v + u v^2 - (F + K) v \), \( D_u=0.2 \), \( D_v=0.1 \), \( F=0.04 \), \( K=0.06 \), absorption \( \alpha = 10 v^2 \). - **Rendering:** Ray march with adaptive step \( t += \max(0.01, 0.5 s(\mathbf{r}(t))) \), terminate at \( s < 10^{-4} \), use bidirectional path tracing with BSDF \( f_r = \frac{R(\theta)}{\pi} + (1 - R) \delta(\mathbf{\omega}_i - \mathbf{\omega}_o') \). Post-process with Gaussian bloom (\(\sigma=0.02\)) and vignette (\(1 - 0.5 \|\mathbf{uv}\|^2\)). ***Add wavy normals and orbifold conifolding into infinity !***