Prompt:
Render no text utilizing graphically the QFT Lagrangian \( \mathcal{L}(x) = -\bar{\phi} \phi + \lambda (\bar{\phi} \phi)^2 + (i \bar{\psi} \gamma^\mu \psi)^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + e j^\mu A_\mu \), where \( F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \), \( j^\mu = \bar{\psi} \gamma^\mu \psi \); include equations of motion: Scalar: \( \bar{\phi} [1 - 2\lambda (\bar{\phi} \phi)] = 0 \) or \( \square \phi + 2\lambda (\bar{\phi} \phi) \phi = 0 \) (full kinetic); Fermion: \( i \gamma^\mu \psi (i \bar{\psi} \gamma_\mu \psi) + e \gamma^\mu A_\mu \psi = 0 \); Gauge: \( \partial_\mu F^{\mu\nu} = e j^\nu + 2 i (i j^\mu) j^\nu \).
At the center, feature a prominent fractal Mandelbulb icon rendered with full rotation by an exact angle of \( \pi/64.2458778542 \) on the z-axis with all rotated frames rendered in statically overlapping on fullscreen! Using constants \( \pi=3.1415926535897932384626433832795 \), \( \text{tau}=2\pi \), \( \text{PHI}=(\sqrt{5}/2 + 0.5) \approx 1.618 \), \( \text{POWER}=11.24788742 \), \( \text{LOOPS}=256 \), and custom hyperbolic functions: \( \text{chp}(x)=(\exp(x)+\exp(-x))/\pi \), \( \text{chpp}(x)=(\exp(x/(\cosh(x)\pi))+\exp(-x/(\cosh(x)/\pi)))/(\text{TAUPHI}) \), \( \text{shp}(x)=(\exp(x)-\exp(-x))/(\pi/\text{PHI}) \), \( \text{shpp}(x)=(\exp(x(\sinh(x)\pi))-\exp(-x(\sinh(x)\pi)))/(\text{TAU}/\text{PHI}) \), \( \text{ssh}(x)=(\exp(x\pi/0.7887)-\exp(-x\pi/0.7887))/(2\pi) \), \( \text{csh}(x)=(\exp(x\pi/0.7887)+\exp(-x\pi/0.7887))/(2\pi) \), \( \text{ssh1}(x)=\sinh(x/\pi)\text{PHI} \), \( \text{csh1}(x)=\cosh(x/\pi)\text{PHI} \). Mandelbulb: \( z=\text{chp}(p)p - p \), \( \text{dr}=1.0 \); loop: \( r=\text{length}(z) \), \( \theta=\text{atan}(z.x,z.y) \), \( \phi=\text{asin}(z.z/r)+\text{time}0.2 \), \( \text{dr}=\text{pow}(r,\text{POWER}-1)\text{drPOWER}+1 \), \( r=\text{pow}(r,\text{POWER}) \), \( \theta=\text{POWER}/\text{PHI} \), \( \phi=\text{POWER}/\text{PHI} \), \( z=r\text{vec3}(\tan(\text{shp}(\sin(\theta)\sin(\phi)))\text{PHI}, \text{chp}(\cos(\theta)\sin(\phi)), \cos(\phi))+p \), \( p=\text{reflect}(p,z) \); \( \text{distance}=0.75\log(r)r/\text{dr} \). \( \text{df}(p)=\text{shp}(\text{mandelBulb}(p/2.0)2.0) \) after \( \text{g\_rot}=\text{rot\_x}(((1.221\text{time}+\pi)/\text{tau})) \). Material: \( \text{mat}=\text{vec3}(0.8,0.5,1.05) \), \( \text{fresnel fre}=(1+\text{dot}(rd,sn))^2 \) mixed \( 0.1-1.0 \), \( \text{diffuse}=\text{dif}^2(1-\text{mat}.x) \) with \( \text{dif}=\max(\text{dot}(ld,sn),0) \), \( ld=\text{normalize}((0,10,0)-sp) \), \( \text{reflection}=r\text{skymat}.y\text{freedge} \) with \( \text{edge}=\text{smoothstep}(1,0.9,\text{fre}) \), colors: \( \text{skyCol}=\text{HSV}(0.6,0.86,1) \), \( \text{glowCol}=\text{HSV}(0.065,0.8,6) \), \( \text{diffuseCol}=\text{HSV}(0.6,0.85,1) \), \( \text{beer}=-\text{HSV}(0.05,0.95,2.0) \), \( \text{absorption ragg}=\exp(-(st+0.1)\text{beer}) \). Sky: planes \( y=4/-6 \), box/pp patterns, \( \text{col}+=4\text{skyColrd}.y^2\text{smoothstep}(0.25,0,db)+0.8\text{skyColexp}(-0.5\max(db,0)) \), \( \text{ds}=\text{length}(pp)-0.5 \), shaped with \( \text{shp}(\text{clamp}(\text{col},0,10)) \); reflections \( \text{reflect}(-\text{ssh1}(rd),\text{chpp}(ro)) \), \( \text{agg}+=\text{ssh1}(r\text{aggskyColor}) \), \( rd=\text{chpp}(\text{ref}) \) or \( ro=\text{shpp}(sp+0.1*rd) \). Post: ACES \( (v=0.6; \text{clamp}((v*(2.51v+0.03))/(v*(2.43v+0.59)+0.14),0,1)) \), sRGB \( \text{mix}(1.055\text{pow}(t,1/2.4)-0.055,12.92t,\text{s