Prompt: A highly detailed, abstract 3D Mandelbrot fractal rendering resembling a Mandelbulb variant with hyperbolic deformations, featuring a central orange bulbous orb surrounded by swirling, fluid-like lobes in shades of blue, pink, and yellow with iridescent, reflective surfaces and gradient transitions. The fractal is defined iteratively in \(\mathbb{R}^3\) for a point \(\mathbf{c} = (x_0, y_0, z_0)\), starting with \(\mathbf{z}_0 = \mathbf{0}\) or \(\mathbf{z}_0 = \mathbf{c}\), and iterating \(\mathbf{z}_{k+1} = r \cdot \vec3\left( \frac{e^{\cos \theta} - e^{-\cos \theta}}{\pi} \cos \phi, \cos \theta \sin \phi, \cos \theta \right) + \vec3\left( \frac{e^{p_x} - e^{-p_x}}{\pi} p_x, \frac{e^{p_y} - e^{-p_y}}{\pi} p_y, \frac{e^{p_z} - e^{-p_z}}{\pi} p_z \right)\), where \(r = \|\mathbf{z}_k\|\), \(\theta = \arccos\left( \frac{z_k \cdot z}{r} \right)\), \(\phi = \atantwo(z_k.y, z_k.x)\), and \(\mathbf{p}\) is a vector parameter like \(\mathbf{c}\). For higher powers n (e.g., 8), scale to \(r^n\), \(n \theta\), \(n \phi\). Iteration halts if \(r > 4\) or after 50 max iterations. Render using ray marching with distance estimator \(DE(\mathbf{q}) = 0.5 \cdot \frac{\log r \cdot r}{dr}\), surface normals via gradients, Phong/PBR shading with reflections, ambient occlusion, and coloring via orbit traps or escape time mapped to hues (orange for low iterations, blue-pink gradients for higher). Apply post-processing for anti-aliasing, depth-of-field, and glow to achieve a dreamy, metallic sheen, viewed zoomed into the central orb with asymmetric swirling arms, Hyper Realistic Fractal Art, HD-Resolution, Vibrant Every Color in The Rainbow Color Palette
Prompt: A highly detailed, abstract 3D Mandelbrot fractal rendering resembling a Mandelbulb variant with hyperbolic deformations, featuring a central orange bulbous orb surrounded by swirling, fluid-like lobes in shades of blue, pink, and yellow with iridescent, reflective surfaces and gradient transitions. The fractal is defined iteratively in \(\mathbb{R}^3\) for a point \(\mathbf{c} = (x_0, y_0, z_0)\), starting with \(\mathbf{z}_0 = \mathbf{0}\) or \(\mathbf{z}_0 = \mathbf{c}\), and iterating \(\mathbf{z}_{k+1} = r \cdot \vec3\left( \frac{e^{\cos \theta} - e^{-\cos \theta}}{\pi} \cos \phi, \cos \theta \sin \phi, \cos \theta \right) + \vec3\left( \frac{e^{p_x} - e^{-p_x}}{\pi} p_x, \frac{e^{p_y} - e^{-p_y}}{\pi} p_y, \frac{e^{p_z} - e^{-p_z}}{\pi} p_z \right)\), where \(r = \|\mathbf{z}_k\|\), \(\theta = \arccos\left( \frac{z_k \cdot z}{r} \right)\), \(\phi = \atantwo(z_k.y, z_k.x)\), and \(\mathbf{p}\) is a vector parameter like \(\mathbf{c}\). For higher powers n (e.g., 8), scale to \(r^n\), \(n \theta\), \(n \phi\). Iteration halts if \(r > 4\) or after 50 max iterations. Render using ray marching with distance estimator \(DE(\mathbf{q}) = 0.5 \cdot \frac{\log r \cdot r}{dr}\), surface normals via gradients, Phong/PBR shading with reflections, ambient occlusion, and coloring via orbit traps or escape time mapped to hues (orange for low iterations, blue-pink gradients for higher). Apply post-processing for anti-aliasing, depth-of-field, and glow to achieve a dreamy, metallic sheen, viewed zoomed into the central orb with asymmetric swirling arms, Hyper Realistic Fractal Art, HD-Resolution, Vibrant Every Color in The Rainbow Color Palette
Would you like to report this Dream as inappropriate?
Prompt:
A highly detailed, abstract 3D Mandelbrot fractal rendering resembling a Mandelbulb variant with hyperbolic deformations, featuring a central orange bulbous orb surrounded by swirling, fluid-like lobes in shades of blue, pink, and yellow with iridescent, reflective surfaces and gradient transitions. The fractal is defined iteratively in \(\mathbb{R}^3\) for a point \(\mathbf{c} = (x_0, y_0, z_0)\), starting with \(\mathbf{z}_0 = \mathbf{0}\) or \(\mathbf{z}_0 = \mathbf{c}\), and iterating \(\mathbf{z}_{k+1} = r \cdot \vec3\left( \frac{e^{\cos \theta} - e^{-\cos \theta}}{\pi} \cos \phi, \cos \theta \sin \phi, \cos \theta \right) + \vec3\left( \frac{e^{p_x} - e^{-p_x}}{\pi} p_x, \frac{e^{p_y} - e^{-p_y}}{\pi} p_y, \frac{e^{p_z} - e^{-p_z}}{\pi} p_z \right)\), where \(r = \|\mathbf{z}_k\|\), \(\theta = \arccos\left( \frac{z_k \cdot z}{r} \right)\), \(\phi = \atantwo(z_k.y, z_k.x)\), and \(\mathbf{p}\) is a vector parameter like \(\mathbf{c}\). For higher powers n (e.g., 8), scale to \(r^n\), \(n \theta\), \(n \phi\). Iteration halts if \(r > 4\) or after 50 max iterations. Render using ray marching with distance estimator \(DE(\mathbf{q}) = 0.5 \cdot \frac{\log r \cdot r}{dr}\), surface normals via gradients, Phong/PBR shading with reflections, ambient occlusion, and coloring via orbit traps or escape time mapped to hues (orange for low iterations, blue-pink gradients for higher). Apply post-processing for anti-aliasing, depth-of-field, and glow to achieve a dreamy, metallic sheen, viewed zoomed into the central orb with asymmetric swirling arms, Hyper Realistic Fractal Art, HD-Resolution, Vibrant Every Color in The Rainbow Color Palette
Modifiers:
digital painting
sharp focus
elegant
dof
extremely detailed
fantasy
intricate
oil on canvas
beautiful
dynamic lighting
award winning
imperial colors
fantastic view
ultra detailed
4K 3D
crisp quality
colourful
cinematic postprocessing
acrylic art
pencil sketch
surreal
magical
Ultra realistic
Fractal art
great depth and scale
More about Vibrant Swirling Blue and Orange Fractal Art
A vibrant fractal design with swirling blue and orange elements, featuring glossy spheres surrounded by intricate patterns. The colors blend seamlessly, creating a sense of depth and movement.
Dream Level: is increased each time when you "Go Deeper" into the dream. Each new level is harder to achieve and
takes more iterations than the one before.
Rare Deep Dream: is any dream which went deeper than level 6.
Deep Dream
You cannot go deeper into someone else's dream. You must create your own.
Deep Dream
Currently going deeper is available only for Deep Dreams.